alkaline activation
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 60)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Vol 22 (1) ◽  
pp. 147-160
Author(s):  
Cristiane do Bom Conselho Sales Alvarenga ◽  
Rosemary do Bom Conselho Sales ◽  
Rodrigo Barreto Caldas ◽  
Paulo Roberto Cetlin ◽  
Maria Teresa Paulino Aguilar

Abstract Metakaolinis the principal raw material utilized in the synthesis of geopolymers, although its ratio of silica and alumina contents is not ideal. Normally, the SiO2 content is adjusted with the use of silicates present in the activating solution. An eco-efficient alternative would be the use of glass waste as an additional source of silica.This work evaluates the efficiency of the alkaline activation of metakaolin, using potassium hydroxide and silicate, with and without the substitution of 12.5% of metakaolin by microparticles of glass. The efficiency of the alkaline activation was evaluated by X ray diffractometry, spectroscopy in the infrared region with the Fourier transform, nuclear magnetic resonance spectroscopy of 27Al and 29Si, specific mass and compressive strength. The results indicate the occurrence of geopolymerization with and without the use of glass waste. It was observed that the substitution of 12.5% favors the mechanical performance of the compounds at 28 days, with increases by 37% and 47% in the mechanical strength of the material with thermal curing and ambient temperature curing, respectively.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 231
Author(s):  
Vlastimil Bílek ◽  
Petr Hrubý ◽  
Valeriia Iliushchenko ◽  
Jan Koplík ◽  
Jakub Kříkala ◽  
...  

The very early stages of alkaline activation of slag control its rheology and setting, but also affect its hydration, which occurs later. Simultaneously, these parameters are dictated by the nature and dose of the alkaline activator. Therefore, we investigated and compared the changes in slag particles (SEM, BET, laser diffraction), as well as in the pore solution composition (ICP–OES), pH, and conductivity, of alkali-activated slag (AAS) pastes containing the three most common sodium activators (waterglass, hydroxide, and carbonate) and water during the first 24 h of its activation. To ensure the best possible comparability of the pastes, a fairly nontraditional mixture design was adopted, based on the same concentration of Na+ (4 mol/dm3) and the same volume fraction of slag in the paste (0.50). The results were correlated with the pastes’ hydration kinetics (isothermal calorimetry), structural build-up (oscillatory rheology), and setting times (Vicat). Great differences were observed in most of these properties, in the formation of hydration products, and in the composition of the pore solution for each activator. The results emphasize the role of the anionic groups in the activators and of the pH, which help predict the sample’s behavior based on its calorimetric curve, and offer data for further comparisons and for the modelling of AAS hydration for specific activators.


Cerâmica ◽  
2021 ◽  
Vol 67 (384) ◽  
pp. 399-405
Author(s):  
H. N. Costa ◽  
C. C. Noberto ◽  
L. A. Almeida ◽  
R. E. F. Q. Nogueira ◽  
A. E. B. Cabral

2021 ◽  
pp. 129770
Author(s):  
José Manuel Moreno-Maroto ◽  
Pedro Delgado-Plana ◽  
Rafael Cabezas-Rodríguez ◽  
Ruby Mejía de Gutiérrez ◽  
Dolores Eliche-Quesada ◽  
...  

2021 ◽  
pp. 103698
Author(s):  
Rafael Robayo-Salazar ◽  
William Valencia-Saavedra ◽  
Ruby Mejía de Gutiérrez
Keyword(s):  

Author(s):  
Yuliia Tamarkina ◽  
Volodymyr Kucherenko ◽  
Iryna Frolova

The purpose of work is to evaluate the 4-chlorophenol (CP) adsorption capacity of brown coal activated carbons (ACs) prepared at different temperature of KOH activation. ACs were obtained in three stages: 1) impregnation of coal with a KOH solution, 2) heating (4 deg/min) in argon to a given temperature t (400-800°C) and exposure for 1 h, 3) cooling, washing from KOH, drying. The samples are designated as AC(t). Based on the N2 adsorption-desorption isotherms, the ACs total pore volume (Vt, cm3/g) and specific surface area (S, m2/g) were determined. The ACs adsorption capacity were measured at 25°С, CP concentration ≤700 mg/L, АC dosage – 1 g/L. The alkaline activation temperature was found to be a key factor in forming porosity of ACs and ability to adsorb CP. The CP maximum capacity (ACP(m), mg/g) increases 6.6 times up to 307 mg/g for AC(800) having S=1142 m2/g. The specific adsorption capacity (ACP(S) = ACP(m)/S, mg/m2) sharply decreases in a sample range from AC(400) to AC(550) and weakly depends on temperature at 550-800°C. The kinetics of CP adsorption is best described by a pseudo-second order model. The rate determining stage is the interaction of CP molecules with AC surface. The CP adsorption isotherms are best described by the Langmuir model. The dependence of the ACP(m) from S can be approximated by three linear equations that probably correspond to the three regions of forming surface adsorbtion centers (AdCs). The first (S≤370 m2/g) is characterized by a small adsorption capacity increment (kS=0.103 mg/m2), but a significant (16.4 times) decrease in the specific capacity ACP(S). In the second region (S=370-770 m2/g, t=550-750°C), capacity increment is 10 times more (kS=0.985 mg/m2) and in the third region (S≥770 m2/g, t≥750°C) the increase in CP capacity is the smallest (kS=0.067 mg/m2). The thermoinitiated formation of AdCs is assumed to be not proportional to the increase in surface area, and their chemical structure and reactivity is determined by the alkaline activation temperature.


Sign in / Sign up

Export Citation Format

Share Document