Setting Time, Workability and Strength Properties of Alkali Activated Fly Ash and Slag Based Geopolymer Concrete Activated with High Silica Modulus Water Glass

Author(s):  
Gugulothu Vikas ◽  
T. D. Gunneswara Rao
Author(s):  
Aikot Pallikkara Shashikala ◽  
Praveen Nagarajan ◽  
Saranya Parathi

Production of Portland cement causes global warming due to the emission of greenhouse gases to the environment. The need for reducing the amount of cement is necessary from sustainability point of view. Alkali activated and geopolymeric binders are used as alternative to cement. Industrial by-products such as fly ash, ground granulated blast furnace slag (GGBS), silica fume, rice husk ash etc. are commonly used for the production of geopolymer concrete. This paper focuses on the development of geopolymer concrete from slag (100% GGBS). Effect of different cementitious materials such as lime, fly ash, metakaolin, rice husk ash, silica fume and dolomite on strength properties of slag (GGBS) based geopolymer concrete are also discussed. It is observed that the addition of dolomite (by-products from rock crushing plants) into slag based geopolymer concrete reduces the setting time, enhances durability and improves rapidly the early age strength of geopolymer concrete. Development of geopolymer concrete with industrial by-products is a solution to the disposal of the industrial wastes. The quick setting concrete thus produced can reduce the cost of construction making it sustainable also.


2021 ◽  
Vol 309 ◽  
pp. 01202
Author(s):  
G.V.V. Satyanarayana ◽  
Kaparaboina Greeshma

The alternative to cement is grabbing attention of inventors due to the numerous advantages with their usage. Fly Ash (FA) and Blast furnace slag (BFS) are abundantly available in bi product form. There is heavy problem in disposal and land availability for industries. So many studies are going on to reduce these problems by usage as cementitious materials in concrete adding advantages towards green concrete. It is developed that Alkali activated flyash concrete has high strength, high acid resistance and heat resistance where as Alkali activated slag concrete has rapid setting time, high strength, impermeable and improved fire resistance. In this study FA and BFS are activated with high silica modulus activator with different activator/binder ratios and binder contents. The alkali activated FA-BFS concrete is verified for workability, compressive strength, split tensile strength, and flexural strength.


2021 ◽  

Concrete is the most versatile, durable and reliable material and is the most used building material. It requires large amounts of Portland cement which has environmental problems associated with its production. Hence, an alternative concrete – geopolymer concrete is needed. The general aim of this book is to make significant contributions in understanding and deciphering the mechanisms of the realization of the alkali-activated fly ash-based geopolymer concrete and, at the same time, to present the main characteristics of the materials, components, as well as the influence that they have on the performance of the mechanical properties of the concrete. The book deals with in-depth research of the potential recovery of fly ash and using it as a raw material for the development of new construction materials, offering sustainable solutions to the construction industry.


2011 ◽  
Vol 287-290 ◽  
pp. 1237-1240
Author(s):  
Lan Fang Zhang ◽  
Rui Yan Wang

The aim of this paper is to study the influence of lithium-slag and fly ash on the workability , setting time and compressive strength of alkali-activated slag concrete. The results indicate that lithium-slag and fly-ash can ameliorate the workability, setting time and improve the compressive strength of alkali-activated slag concrete,and when 40% or 60% slag was replaced by lithium-slag or fly-ash, above 10 percent increase in 28-day compressive strength of concrete were obtained.


2018 ◽  
Vol 9 ◽  
pp. e00198 ◽  
Author(s):  
Prinya Chindaprasirt ◽  
Tanakorn Phoo-ngernkham ◽  
Sakonwan Hanjitsuwan ◽  
Suksun Horpibulsuk ◽  
Anurat Poowancum ◽  
...  

2016 ◽  
Vol 841 ◽  
pp. 1-6 ◽  
Author(s):  
Puput Risdanareni ◽  
Adjib Karjanto ◽  
Febriano Khakim

This paper describes the result of investigating volcanic ash of Mount Kelud as fly ash substitute material to produce geopolymer concrete. The test was held on geopolymer concrete blended with 0%, 25%, 50% and 100% fly ash replacement with volcanic ash. Natrium Hidroxide (NaOH) with concentration of 12 molar and Natrium Silicate (Na2SiO3) were used as alkaline activator. While alkali-activator ratio of 2 was used in this research. The physical properties was tested by porosity and setting time test, while split tensile strength presented to measure brittle caracteristic of geopolymer concrete. The result shown that increasing volcanic ash content in the mixture will increase setting time of geopolymer paste. On the other hand increasing volcanic ash content will reduce split tensile strength and porosity of geopolymer concrete. After all replacing fly ash with volcanic ash was suitable from 25% to 50% due to its optimum physical and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document