Precursors of thymic peptides as stress sensors

2020 ◽  
Vol 20 (12) ◽  
pp. 1461-1475 ◽  
Author(s):  
Sergey Lunin ◽  
Maxim Khrenov ◽  
Olga Glushkova ◽  
Svetlana Parfenyuk ◽  
Tatyana Novoselova ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
A. Sedova ◽  
S. Khodorov ◽  
D. Ehre ◽  
B. Achrai ◽  
H. D. Wagner ◽  
...  

The dielectric and electrical characteristics of the semiconductive WS2 nanotubes/epoxy composites were studied as a function of the nanotubes concentration and the pressure applied during their molding. In addition, the ability of WS2 nanotubes to serve as stress sensors in epoxy based nanocomposites, for health-monitoring applications, was studied. The nanocomposite elements were loaded in three-point bending configuration. The direct current was monitored simultaneously with stress-strain measurements. It was found that, in nanocomposites, above the percolation concentrations of the nanotubes, the electrical conductivity increases considerably with the applied load and hence WS2 nanotubes can be potentially used as sensors for health monitoring of structural components.


2008 ◽  
Vol 154 ◽  
pp. S18
Author(s):  
Laszlo Vigh ◽  
Zsolt Torok ◽  
Gabor Balogh ◽  
Eniko Nagy ◽  
Imre Gombos ◽  
...  

2000 ◽  
Vol 124 (1) ◽  
pp. 22-26 ◽  
Author(s):  
Ben-Je Lwo ◽  
Ching-Hsing Kao ◽  
Tung-Sheng Chen ◽  
Yao-Shing Chen

Stress measurements in microelectronic packaging through piezoresistive sensors take the advantage of both in-situ and nondestructive. In this study, test chips with both p-type and n-type piezoresistive stress sensors, as well as a heat source, were first designed, then manufactured by a commercialized foundry so that the uniformity of the test chips was expected. Both temperature and stress calibrations were next performed through a special designed MQFP (Metal Quad Flat Package) and four-point bending (4PB) structure, respectively. Measurements of stresses which are produced due to both manufacturing process and thermal effects on the test chips were finally executed, and approximately linear relationships were observed between stress and temperature as well as stress and input power. It is concluded that n-type piezoresistive stress sensors are able to extract stress in microelectronic packaging with good accuracy.


Soft Matter ◽  
2020 ◽  
Vol 16 (27) ◽  
pp. 6230-6252 ◽  
Author(s):  
Naomi Deneke ◽  
Mitchell L. Rencheck ◽  
Chelsea S. Davis

Mechanophores are force-responsive molecules that have the potential to serve as stress sensors in various material systems. This review discusses recent scientific advances and critical challenges facing engineers regarding implementation of mechanophores in polymeric materials.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 66-72
Author(s):  
Tao Pan ◽  
Daniel Hyman ◽  
Mehran Mehregany ◽  
Eli Reshotko ◽  
Steven Garverick

2020 ◽  
Vol 1 (1) ◽  
pp. 36-41
Author(s):  
Gaurav Ranabhat ◽  
Ashmita Dhakal ◽  
Saurav Ranabhat ◽  
Ananta Dhakal ◽  
Rakshya Aryal

Modern biotechnology enables an organism to produce a totally new product which the organism does not or cannot produce normally through the incorporation of the technology of ‘Genetic engineering’. Biotechnology shows its technical merits and new development prospects in breeding of new plants varieties with high and stable yield, good quality, as well as stress tolerance and resistance. Some of the most prevailing problems faced in agricultural ecosystems could be solved with the introduction of transgenic crops incorporated with traits for insect pest resistance, herbicide tolerance and resistance to viral diseases. Plant biotechnology has gained importance in the recent past for increasing the quality and quantity of agricultural, horticultural, ornamental plants, and in manipulating the plants for improved agronomic performance. Recent developments in the genome sequencing will have far reaching implications for future agriculture. From this study, we can know that the developing world adopts these fast-changing technologies soon and harness their unprecedented potential for the future benefit of human being.


Relay Journal ◽  
2019 ◽  
Author(s):  
Sam Morris

Teachers and advisors involved in the emotional business of language education feel frustrated from time to time, and if such emotions are not managed healthily, they may lead to negative outcomes such as stress and burnout. One important system for taking control of frustration is emotion regulation, the cognitive and behavioural strategies through which individuals manage their emotions. In this short article, I define frustration and discuss its negative impact on the language classroom. I then introduce a structured reflective journaling tool, built upon Gross’s Process model of emotion regulation (Gross, 2014, 2015) which may help teachers and advisors develop greater awareness and control over experiences of frustration.


Sign in / Sign up

Export Citation Format

Share Document