scholarly journals Pyrrolidine-based 3-deoxysphingosylphosphorylcholine analogs as possible candidates against neglected tropical diseases (NTDs): identification of hit compounds towards development of potential treatment of Leishmania donovani

2021 ◽  
Vol 36 (1) ◽  
pp. 1922-1930
Author(s):  
Ahmed H. E. Hassan ◽  
Trong-Nhat Phan ◽  
Seolmin Yoon ◽  
Cheol Jung Lee ◽  
Hye Rim Jeon ◽  
...  
2021 ◽  
Author(s):  
Aya Hefnawy ◽  
Gabriel Negreira ◽  
Marlene Jara ◽  
James A. Cotton ◽  
Ilse Maes ◽  
...  

AbstractThe implementation of prospective drug resistance (DR) studies in the R&D pipelines is a common practice for many infectious diseases, but not for Neglected Tropical Diseases. Here, we explored and demonstrated the importance of this approach, using as paradigms Leishmania donovani, the etiological agent of Visceral Leishmaniasis (VL), and TCMDC-143345, a promising compound of the GSK ‘Leishbox’ to treat VL. We experimentally selected resistance to TCMDC-143345 in vitro and characterized resistant parasites at genomic and phenotypic levels. We found that it took more time to develop resistance to TCMDC-143345 than to other drugs in clinical use and that there was no cross resistance to these drugs, suggesting a new and unique mechanism. By whole genome sequencing, we found two mutations in the gene encoding the L. donovani dynamin-1-like protein (LdoDLP1) that were fixed at highest drug pressure. Through phylogenetic analysis, we identified LdoDLP1 as a family member of the dynamin-related proteins, a group of proteins that impacts the shapes of biological membranes by mediating fusion and fission events, with a putative role in mitochondrial fission. We found that L. donovani lines genetically engineered to harbor the two identified LdoDLP1 mutations were resistant to TCMDC-143345 and displayed altered mitochondrial properties. By homology modeling, we showed how the two LdoDLP1 mutations may influence protein structure and function. Taken together, our data reveal a clear involvement of LdoDLP1 in the adaptation/resistance of L. donovani to TCMDC-143345.ImportanceHumans and their pathogens are continuously locked in a molecular arms race during which the eventual emergence of pathogen drug resistance (DR) seems inevitable. For neglected tropical diseases (NTDs), DR is generally studied retrospectively, once it has already been established in clinical settings. We previously recommended to keep one step ahead in the host-pathogen arms race and implement prospective DR studies in the R&D pipeline, a common practice for many infectious diseases, but not for NTDs. Here, using Leishmania donovani, the etiological agent of Visceral Leishmaniasis (VL), and TCMDC-143345, a promising compound of the GSK ‘Leishbox’ to treat VL, as paradigms, we experimentally selected resistance to the compound and proceeded to genomic and phenotypic characterization of DR parasites. The results gathered in the present study suggest a new DR mechanism involving the L. donovani dynamin-1 like protein (LdoDLP1) and demonstrate the practical relevance of prospective DR studies.


2019 ◽  
Author(s):  
Rachael Lappan ◽  
Cajsa Classon ◽  
Shashi Kumar ◽  
Om-Prakash Singh ◽  
Ricardo V. de Almeida ◽  
...  

AbstractVisceral leishmaniasis (VL) caused by Leishmania donovani remains of public health concern in rural India. Those at risk of VL are also at risk of other neglected tropical diseases (NTDs) including soil transmitted helminths. Intestinal helminths are potent regulators of host immune responses sometimes mediated through cross-talk with gut microbiota. We evaluate a meta-taxonomic approach to determine the composition of prokaryotic and eukaryotic gut microflora using amplicon-based sequencing of 16S ribosomal RNA (16S rRNA) and 18S rRNA gene regions. The most abundant bacterial taxa identified in faecal samples from Bihar State India were Prevotella (37.1%), Faecalibacterium (11.3%), Escherichia-Shigella (9.1%), Alloprevotella (4.5%), Bacteroides (4.1%), Ruminococcaceae UCG-002 (1.6%), and Bifidobacterium (1.5%). Eukaryotic taxa identified (excluding plant genera) included Blastocystis (57.9%; Order: Stramenopiles), Dientamoeba (12.1%; Family: Tritrichomonadea), Pentatrichomonas (10.1%; Family: Trichomonodea), Entamoeba (3.5%; Family: Entamoebida), Ascaridida (0.8%; Family: Chromodorea; concordant with Ascaris by microscopy), Rhabditida (0.8%; Family: Chromodorea; concordant with Strongyloides), and Cyclophyllidea (0.2%; Order: Eucestoda; concordant with Hymenolepis). Overall alpha (Shannon’s, Faith’s and Pielou’s indices) and beta (Bray-Curtis dissimilarity statistic; weighted UniFrac distances) diversity of taxa did not differ significantly by age, sex, geographic subdistrict, or VL case (N=23) versus endemic control (EC; N=23) status. However, taxon-specific associations occurred: (i) Ruminococcaceae UCG-014 and Gastranaerophilales_uncultured bacterium were enriched in EC compared to VL cases; (ii) Pentatrichomonas was more abundant in VL cases than in EC, whereas the reverse occurred for Entamoeba. Across the cohort, high Escherichia-Shigella was associated with reduced bacterial diversity, while high Blastocystis was associated with high bacterial diversity and low Escherichia-Shigella. Individuals with high Blastocystis had low Bacteroidaceae and high Clostridiales vadin BB60 whereas the reverse held true for low Blastocystis. This scoping study provides useful baseline data upon which to develop a broader analysis of pathogenic enteric microflora and their influence on gut microbial health and NTDs generally.Author SummaryVisceral leishmaniasis (VL), also known as kala-azar, is a potentially fatal disease caused by intracellular parasites of the Leishmania donovani complex. VL is a serious public health problem in rural India, causing high morbidity and mortality, as well as major costs to local and national health budgets. People at risk of VL are also at risk of other neglected tropical diseases (NTDs) including soil transmitted helminths (worms). Intestinal worms are potent regulators of host immune responses often mediated through cross-talk with gut bacteria. Here we have used a modern DNA sequencing approach to determine the composition of microbiota in stool samples from VL cases and endemic controls. This allows us to determine all bacteria, as well as all single-celled and multicellular organisms, that comprise the microorganisms in the gut in a single sequencing experiment from a single stool sample. In addition to providing valuable information concerning commensal and pathogenic gut micro-organisms prevalent in this region of India, we find some specific associations between single-celled gut pathogens and VL case status.


mBio ◽  
2022 ◽  
Author(s):  
Aya Hefnawy ◽  
Gabriel Negreira ◽  
Marlene Jara ◽  
James A. Cotton ◽  
Ilse Maes ◽  
...  

Humans and their pathogens are continuously locked in a molecular arms race during which the eventual emergence of pathogen drug resistance (DR) seems inevitable. For neglected tropical diseases (NTDs), DR is generally studied retrospectively once it has already been established in clinical settings.


2020 ◽  
Author(s):  
Cristhian David Morales-Plaza

Guarantee better clinical practices among clinicians who attend NTDs in developing countries as well as provide education in vector control in hotspot vulnerable communities


2020 ◽  
Vol 27 ◽  
Author(s):  
Kush K. Maheshwari ◽  
Debasish Bandyopadhyay

Background: Neglected tropical diseases (NTDs) affect a huge population of the world and majority of the victims belong to the poor community of the developing countries. Until now, the World Health Organization (WHO) has identified 20 tropical diseases as NTDs that must be addressed with high priority. However, many heterocyclic scaffolds have demonstrated potent therapeutic activity against several NTDs. Objective: There are three major objectives: (1) To discuss the causes, symptoms, and current status of all the 20 NTDs; (2) To explore the available heterocyclic drugs, and their mechanism of actions (if known) that are being used to treat NTDs; (3) To develop general awareness on NTDs among the medicinal/health research community and beyond. Methods: The 20 NTDs have been discussed according to their alphabetic orders along with the possible heterocyclic remedies. Current status of treatment with an emphasis on the heterocyclic drugs (commercially available and investigational) has been outlined. In addition, brief discussion of the impacts of NTDs on socio-economic condition is included. Results: NTDs are often difficult to diagnose and the problem is worsened by the unhealthy hygiene, improper awareness, and inadequate healthcare in the developing countries where these diseases primarily affect poor people. The statistics include duration of suffering, numbers affected, and access to healthcare and medication. The mechanism of actions of various heterocyclic drugs, if reported, have been briefly summarized. Conclusion: Scientists and pharmaceutical corporations should allocate more resources to reveal the in-depth mechanism of actions of many heterocyclic drugs that are currently being used for the treatment of NTDs. Analysis of current heterocyclic compounds and development of new medications can help in the fight to reduce/remove the devastating effects of NTDs. An opinion-based concise review has been presented. Based on available literature, this is the first effect to present all the 20 NTDs and related heterocyclic compounds under the same umbrella.


2014 ◽  
Vol 18 (20) ◽  
pp. 2572-2602 ◽  
Author(s):  
Rafael Espirito Santo ◽  
Marcella Machado ◽  
Jean Santos ◽  
Eduardo Gonzalez ◽  
Chung Chin

2020 ◽  
Vol 21 (12) ◽  
pp. 1250-1263
Author(s):  
Saurabh Shrivastava ◽  
Anshita Gupta ◽  
Chanchal Deep Kaur

Background: Lymphatic filariasis is a pervasive and life-threatening disease for human beings. Currently, 893 million people in 49 countries worldwide affected by lymphatic filariasis as per WHO statistics. The concealed aspects of lymphatic diseases such as delayed disease detection, inappropriate disease imaging, the geographical outbreak of infection, and lack of preventive chemotherapy have brought this epidemic to the edge of Neglected Tropical Diseases. Many medications and natural bioactive substances have seen to promote filaricidal activity against the target parasitic species. However, the majority of failures have occurred in pharmaceutical and pharmacokinetic issues. Objective: The purpose of the study is to focus on the challenges and therapeutic issues in the treatment of filariasis. The review brings novel techniques and therapeutic approaches for combating lymphatic filariasis. It also offers significant developments and opportunities for such therapeutic interventions. Conclusion: Through this review, an attempt has made to critically evaluate the avenues of innovative pharmaceuticals and molecular targeting approaches to bring an integrated solution to combat lymphatic filariasis.


Sign in / Sign up

Export Citation Format

Share Document