Integrative taxonomy of Peniculus, Metapeniculus, and Trifur (Siphonostomatoida: Pennellidae), copepod parasites of marine fishes from Chile: species delimitation analyses using DNA barcoding and morphological evidence

2016 ◽  
Vol 14 (5) ◽  
pp. 466-483 ◽  
Author(s):  
Raúl Castro-romero ◽  
Martín M. Montes ◽  
Sergio R. Martorelli ◽  
Diego Sepulveda ◽  
Silvia Tapia ◽  
...  
Author(s):  
Claudia Isabel Navarro-Rodríguez ◽  
Alejandro Valdez-Mondragón

Based on an integrative taxonomic approach, a new species of the genus Loxosceles Heineken & Lowe, 1832, is described from the state of Hidalgo, Mexico. Loxosceles tolantongo sp. nov. is described based on DNA barcoding using cytochrome c oxidase subunit 1 (CO1) and internal transcribed spacer 2 (ITS2), and morphology. For species delimitation, four molecular methods were implemented: 1) corrected p-distances under neighbor joining (NJ); 2) automatic barcode gap discovery (ABGD); 3) general mixed yule coalescent model (GMYC) and 4) Bayesian Poisson tree processes (bPTP). The new species morphologically resembles L. jaca, another species from Hidalgo, but there are morphological differences mainly in the tibiae of the male palp, the seminal receptacles of the females and also the high genetic p-distances. CO1 was more informative than ITS2 for the genetic separation; however, both concatenated genes (CO1 + ITS2) present robust evidence for species delimitation. Loxosceles tolantongo sp. nov. is considered a unique species for four reasons: 1) it can be diagnosed and distinguished by morphological characters (of the male palps mainly, but also of the seminal receptacles of the females); 2) the genetic p-distances with CO1 were high (>10%); 3) the molecular species delimitation methods were congruent under CO1 and CO1 + ITS2; and 4) under CO1 and CO1 + ITS2, the new species is a putative sister group of L. jaca + L. tenango.


2017 ◽  
Vol 6 (2) ◽  
pp. 5278
Author(s):  
Siva Prasad K.* ◽  
Sreeramulu K. ◽  
N. V. Prasad

A survey has been conducted to collect copepod parasites from Gazza achlamys (Jordan & Starks, 1917) and Ariomma indica (Day, 1871) off Visakhapatnam coast. Altogether, seven copepod species were identified. They are Caligus kuroshino (Shiino, 1960), Bomolochus decapteri (Yamaguti, 1936), Bomolochus nothrus (Wilson, 1913), Pseudartacolax lateolabracis (Yamaguti et al., 1959), Pumiliopes opisthopteri (Shen, 1957), Lernanthropus amphitergum (Pearse, 1951) and Lernanthropus ilishae (Chin, 1948). A list of hosts parasites and brief description of these parasites has given in this paper.


Diversity ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 428
Author(s):  
Martin Stervander ◽  
Bengt Hansson ◽  
Urban Olsson ◽  
Mark F. Hulme ◽  
Ulf Ottosson ◽  
...  

Larks constitute an avian family of exceptional cryptic diversity and striking examples of convergent evolution. Therefore, traditional morphology-based taxonomy has recurrently failed to reflect evolutionary relationships. While taxonomy ideally should integrate morphology, vocalizations, behaviour, ecology, and genetics, this can be challenging for groups that span several continents including areas that are difficult to access. Here, we combine morphometrics and mitochondrial DNA to evaluate the taxonomy of Calandrella larks, with particular focus on the African C. cinerea and the Asian C. acutirostris complexes. We describe a new range-restricted West African taxon, Calandrella cinerea rufipecta ssp. nov. (type locality: Jos, Plateau State, Nigeria), with an isolated relic population 3000 km from its closest relative in the Rift Valley. We performed molecular species delimitation, employing coalescence-based multi-rate Poisson Tree Processes (mPTP) on cytochrome b sequences across 52 currently recognized lark species, including multiple taxa currently treated as subspecies. Three species-level splits were inferred within the genus Calandrella and another 13 across other genera, primarily among fragmented sub-Saharan taxa and taxa distributed from Northwest Africa to Arabia or East Africa. Previously unknown divergences date back as far as to the Miocene, indicating the presence of currently unrecognized species. However, we stress that taxonomic decisions should not be based on single datasets, such as mitochondrial DNA, although analyses of mitochondrial DNA can be a good indicator of taxa in need of further integrative taxonomic assessment.


2021 ◽  
Author(s):  
Mónica Núñez-Flores ◽  
Daniel Gomez-Uchida ◽  
Pablo J. López-González

Thouarella Gray, 1870, is one of the most speciose genera among gorgonians of the family Primnoidae (Cnidaria:Octocorallia:Anthozoa), being remarkably diverse in the Antarctic and sub-Antarctic seafloor. However, their diversity in the Southern Ocean is likely underestimated. Phylogenetic analyses of mitochondrial and nuclear DNA markers were integrated with species delimitation approaches as well as morphological colonial and polyps features and skeletal SEM examinations to describe and illustrate three new species within Thouarella, from the Weddell Sea, Southern Ocean: T. amundseni sp. nov., T. dolichoespinosa sp. nov. and T. pseudoislai sp. nov. Our species delimitation results suggest, for the first time, the potential presence of Antarctic and sub-Antarctic cryptic species of primnoids, based on the likely presence of sibling species within T. undulata and T. crenelata. With the three new species here described, the global diversity of Thouarella has increased to 41 species, 15 of which are endemic to the Antarctic and sub-Antarctic waters. Consequently, our results provide new steps for uncovering the shelf benthonic macrofauna’s hidden diversity in the Southern Ocean. Finally, we recommend using an integrative taxonomic framework in this group of organisms and species delimitation approaches because the distinctions between some Thouarella species based only on a superficial examination of their macro- and micromorphological features is, in many cases, limited.


2019 ◽  
Author(s):  
◽  
Morgan Gueuning

Wild bees are essential pollinators and therefore play a key role in both natural and agricultural ecosystems. However, bees have often been neglected in conservation studies and policies worldwide, which is surprising given their ecological importance. As a result, little is known on the conservation status of the vast majority of wild bee species in Europe, and even less worldwide. Limited surveys suggest important declines in the abundance and diversity of most wild bee communities worldwide. It is therefore urgent to implement targeted measures for the conservation of these keystone species. Once implemented, the effectiveness of these measures must be evaluated using adequate monitoring programs. To date, wild bee surveys are entirely based on morphological identification, which is both labor intensive and time consuming. Consequently, an affordable, high-throughput identification method is needed to reduce costs and improve bee monitoring. The objective of this thesis was to evaluate novel genetic techniques based on Next Generation Sequencing (NGS) methods for facilitating surveys of wild bees. NGS tools were mainly investigated for bridging two important impediments to wild bee conservation efforts, i.e., the cost of biodiversity assessment schemes and taxonomic incompleteness. With the development of NGS techniques, DNA barcoding has gained enormous momentum, enabling cost-effective, fast and accurate identifications. Before these methods can be routinely used in monitoring programs, there are however still important knowledge gaps to fill. These gaps mainly concern the detection of rare species and the acquisition of accurate quantitative data on species abundance; more generally the cost and labour effectiveness of these methods need to be evaluated. To provide a comprehensive presentation of the advantages and weaknesses of different NGS-based identification methods, we assessed three of the most promising ones, namely metabarcoding, mitogenomics and NGS barcoding. Using a regular monitoring data, we found that NGS barcoding performed best for both species’ presence/absence and abundance data, producing only few false positives and no false negatives. The other methods investigated were less reliable in term of species detection and inference of abundance data, and partly led to erroneous ecological conclusions. In terms of workload and cost, we showed that NGS techniques were more expensive than morphological identification with our dataset, although these techniques would become slightly more economical in large-scale monitoring programs. A second aim of this thesis was to provide an easy and robust genomic solution to alleviate taxonomical incompleteness, one of the major impediments to the effective conservation of many insect taxa. For conservation purposes, having stable and well-delimited species hypotheses is essential. Currently, most species are delimitated based on morphology and/or DNA barcoding. These methods are however associated with important limitations, and it is widely accepted that species delimitation should rely on multi-locus genomic markers. To overcome these limitations, ultraconserved elements (UCEs) were tested as a fast and robust approach using different species-complexes harbouring cryptic diversity, mitochondrial introgression, or mitochondrial paraphyly. Phylogenetic analyses of UCEs were highly conclusive and yielded meaningful species delimitation hypotheses in all cases. These results provide strong evidence for the potential of UCEs as a fast method for delimiting species even in cases of recently diverged lineages. Advantages and limitations of UCEs for shallow phylogenetic studies are further discussed.


Author(s):  
Daniel Lukic ◽  
Jonas Eberle ◽  
Jana Thormann ◽  
Carolus Holzschuh ◽  
Dirk Ahrens

DNA-barcoding and DNA-based species delimitation are major tools in DNA taxonomy. Sampling has been a central debate in this context, because the geographical composition of samples affect the accuracy and performance of DNA-barcoding. Performance of complex DNA-based species delimitation is to be tested under simpler conditions in absence of geographic sampling bias. Here, we present an empirical data set sampled from a single locality in a Southeast-Asian biodiversity hotspot (Laos: Phou Pan mountain). We investigate the performance of various species delimitation approaches on a megadiverse assemblage of herbivore chafer beetles (Coleoptera: Scarabaeidae) to infer whether species delimitation suffers in the same way from exaggerate infraspecific variation despite the lack of geographic genetic variation that led to inconsistencies between entities from DNA-based and morphology-based species inference in previous studies. For this purpose, a 658 bp fragment of the mitochondrial cytochrome c oxidase subunit 1 (cox1) was analysed for a total of 186 individuals of 56 morphospecies. Tree based and distance based species delimitation methods were used. All approaches showed a rather limited match ratio (max. 77%) with morphospecies. PTP and TCS prevailingly over-splitted morphospecies, while 3% clustering and ABGD also lumped several species into one entity. ABGD revealed the highest congruence between molecular operational taxonomic units (MOTUs) and morphospecies. Disagreements between morphospecies and MOTUs were discussed in the context of historically acquired geographic genetic differentiation, incomplete lineage sorting, and hybridization. The study once again highlights how important morphology still is in order to correctly interpret the results of molecular species delimitation.


Zootaxa ◽  
2016 ◽  
Vol 4079 (5) ◽  
pp. 534 ◽  
Author(s):  
CHAO SONG ◽  
QIAN WANG ◽  
RUILEI ZHANG ◽  
BINGJIAO SUN ◽  
XINHUA WANG

2013 ◽  
pp. n/a-n/a ◽  
Author(s):  
Raquel Pino-Bodas ◽  
María P. Martín ◽  
Ana R. Burgaz ◽  
H. Thorsten Lumbsch

2005 ◽  
Vol 54 (5) ◽  
pp. 844-851 ◽  
Author(s):  
Kipling W. Will ◽  
Brent D. Mishler ◽  
Quentin D. Wheeler

Sign in / Sign up

Export Citation Format

Share Document