A novel fractional order proportional integral derivative plus second-order derivative controller for load frequency control

Author(s):  
Bhuvnesh Khokhar ◽  
Surender Dahiya ◽  
K. P. Singh Parmar
Author(s):  
Magdy A. S. Aboelela

This paper studies the implementation of the Bat Inspired Algorithm (BIA)<br />as an optimization technique to find the optimal parameters of two classes of controllers. The first is the classical Proportional-Integral-Derivative (PID). The second is the hybrid fractional order and Brain Emotional Intelligent controller. The two controllers have been implemented, separately, for the load frequency control of a single area electric power system with three physical imbedded nonlinearities. The first nonlinearity represents the generation’s rate constraint (GRC). The second is owing to the governor dead band (GDB). The last is due to the time delay imposed by the governor-turbine link, the thermodynamic process, and the communication channels. These nonlinearities have been embedded in the simulation model of the system under study. Matlab/Simulink software has been applied to obtain the results of applying the two classes of controllers which have been, optimally, tuned using the BIA. The Integral of Square Error (ISE) criterion has been selected as an element of the objective function along with the percentage overshoot and settling time for the optimum tuning technique of the two controllers. The simulation results show that when using the hybrid fractional order and Brain Emotional Intelligent controller, it gives better response and performance indices than the conventional Proportional-Integral-Derivative (PID) controllers.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3604
Author(s):  
Hady H. Fayek ◽  
Panos Kotsampopoulos

This paper presents load frequency control of the 2021 Egyptian power system, which consists of multi-source electrical power generation, namely, a gas and steam combined cycle, and hydro, wind and photovoltaic power stations. The simulation model includes five generating units considering physical constraints such as generation rate constraints (GRC) and the speed governor dead band. It is assumed that a centralized controller is located at the national control center to regulate the frequency of the grid. Four controllers are applied in this research: PID, fractional-order PID (FOPID), non-linear PID (NPID) and non-linear fractional-order PID (NFOPID), to control the system frequency. The design of each controller is conducted based on the novel tunicate swarm algorithm at each operating condition. The novel method is compared to other widely used optimization techniques. The results show that the tunicate swarm NFOPID controller leads the Egyptian power system to a better performance than the other control schemes. This research also presents a comparison between four methods to self-tune the NFOPID controller at each operating condition.


2020 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Hady H. Fayek

Remote farms in Africa are cultivated lands planned for 100% sustainable energy and organic agriculture in the future. This paper presents the load frequency control of a two-area power system feeding those farms. The power system is supplied by renewable technologies and storage facilities only which are photovoltaics, biogas, biodiesel, solar thermal, battery storage and flywheel storage systems. Each of those facilities has 150-kW capacity. This paper presents a model for each renewable energy technology and energy storage facility. The frequency is controlled by using a novel non-linear fractional order proportional integral derivative control scheme (NFOPID). The novel scheme is compared to a non-linear PID controller (NPID), fractional order PID controller (FOPID), and conventional PID. The effect of the different degradation factors related to the communication infrastructure, such as the time delay and packet loss, are modeled and simulated to assess the controlled system performance. A new cost function is presented in this research. The four controllers are tuned by novel poor and rich optimization (PRO) algorithm at different operating conditions. PRO controller design is compared to other state of the art techniques in this paper. The results show that the PRO design for a novel NFOPID controller has a promising future in load frequency control considering communication delays and packet loss. The simulation and optimization are applied on MATLAB/SIMULINK 2017a environment.


Sign in / Sign up

Export Citation Format

Share Document