scholarly journals Increased maximum power output may improve speech recognition with bone conduction hearing devices

Author(s):  
Håkan Hua ◽  
Tine Goossens ◽  
Aaran T. Lewis
2017 ◽  
Vol 157 (4) ◽  
pp. 565-571 ◽  
Author(s):  
Swathi Appachi ◽  
Jessica. L. Specht ◽  
Nikhila Raol ◽  
Judith E. C. Lieu ◽  
Michael S. Cohen ◽  
...  

Objective Options for management of unilateral hearing loss (UHL) in children include conventional hearing aids, bone-conduction hearing devices, contralateral routing of signal (CROS) aids, and frequency-modulating (FM) systems. The objective of this study was to systematically review the current literature to characterize auditory outcomes of hearing rehabilitation options in UHL. Data Sources PubMed, EMBASE, Medline, CINAHL, and Cochrane Library were searched from inception to January 2016. Manual searches of bibliographies were also performed. Review Methods Studies analyzing auditory outcomes of hearing amplification in children with UHL were included. Outcome measures included functional and objective auditory results. Two independent reviewers evaluated each abstract and article. Results Of the 249 articles identified, 12 met inclusion criteria. Seven articles solely focused on outcomes with bone-conduction hearing devices. Outcomes favored improved pure-tone averages, speech recognition thresholds, and sound localization in implanted patients. Five studies focused on FM systems, conventional hearing aids, or CROS hearing aids. Limited data are available but suggest a trend toward improvement in speech perception with hearing aids. FM systems were shown to have the most benefit for speech recognition in noise. Studies evaluating CROS hearing aids demonstrated variable outcomes. Conclusions Data evaluating functional and objective auditory measures following hearing amplification in children with UHL are limited. Most studies do suggest improvement in speech perception, speech recognition in noise, and sound localization with a hearing rehabilitation device.


2021 ◽  
Vol 11 (2) ◽  
pp. 207-219
Author(s):  
Susan E. Ellsperman ◽  
Emily M. Nairn ◽  
Emily Z. Stucken

Bone conduction is an efficient pathway of sound transmission which can be harnessed to provide hearing amplification. Bone conduction hearing devices may be indicated when ear canal pathology precludes the use of a conventional hearing aid, as well as in cases of single-sided deafness. Several different technologies exist which transmit sound via bone conduction. Here, we will review the physiology of bone conduction, the indications for bone conduction amplification, and the specifics of currently available devices.


2004 ◽  
Vol 96 (4) ◽  
pp. 1277-1284 ◽  
Author(s):  
Roy L. P. G. Jentjens ◽  
Luke Moseley ◽  
Rosemary H. Waring ◽  
Leslie K. Harding ◽  
Asker E. Jeukendrup

The purpose of the present study was to examine whether combined ingestion of a large amount of fructose and glucose during cycling exercise would lead to exogenous carbohydrate oxidation rates >1 g/min. Eight trained cyclists (maximal O2consumption: 62 ± 3 ml·kg-1·min-1) performed four exercise trials in random order. Each trial consisted of 120 min of cycling at 50% maximum power output (63 ± 2% maximal O2consumption), while subjects received a solution providing either 1.2 g/min of glucose (Med-Glu), 1.8 g/min of glucose (High-Glu), 0.6 g/min of fructose + 1.2 g/min of glucose (Fruc+Glu), or water. The ingested fructose was labeled with [U-13C]fructose, and the ingested glucose was labeled with [U-14C]glucose. Peak exogenous carbohydrate oxidation rates were ∼55% higher ( P < 0.001) in Fruc+Glu (1.26 ± 0.07 g/min) compared with Med-Glu and High-Glu (0.80 ± 0.04 and 0.83 ± 0.05 g/min, respectively). Furthermore, the average exogenous carbohydrate oxidation rates over the 60- to 120-min exercise period were higher ( P < 0.001) in Fruc+Glu compared with Med-Glu and High-Glu (1.16 ± 0.06, 0.75 ± 0.04, and 0.75 ± 0.04 g/min, respectively). There was a trend toward a lower endogenous carbohydrate oxidation in Fruc+Glu compared with the other two carbohydrate trials, but this failed to reach statistical significance ( P = 0.075). The present results demonstrate that, when fructose and glucose are ingested simultaneously at high rates during cycling exercise, exogenous carbohydrate oxidation rates can reach peak values of ∼1.3 g/min.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Joseph T. Breen ◽  
Marc-Elie Nader ◽  
Paul W. Gidley

1992 ◽  
Vol 170 (1) ◽  
pp. 143-154 ◽  
Author(s):  
M. ELIZABETH ANDERSON ◽  
IAN A. JOHNSTON

Fast muscle fibres were isolated from abdominal myotomes of Atlantic cod (Gadus morhua L.) ranging in size from 10 to 63 cm standard length (Ls). Muscle fibres were subjected to sinusoidal length changes about their resting length (Lf) and stimulated at a selected phase of the strain cycle. The work performed in each oscillatory cycle was calculated from plots of force against muscle length, the area of the resulting loop being net work. Strain and the number and timing of stimuli were adjusted to maximise positive work per cycle over a range of cycle frequencies at 8°C. Force, and hence power output, declined with increasing cycles of oscillation until reaching a steady state around the ninth cycle. The strain required for maximum power output (Wmax) was ±7-11% of Lf in fish shorter than 18 cm standard length, but decreased to ±5 % of Lf in larger fish. The cycle frequency required for Wmax also declined with increasing fish length, scaling to Ls−0.51 under steady-state conditions (cycles 9–12). At the optimum cycle frequency and strain the maximum contraction velocity scaled to Ls−0.79. The maximum stress (Pmax) produced within a cycle was highest in the second cycle, ranging from 51.3 kPa in 10 cm fish to 81.8 kPa in 60 cm fish (Pmax=28.2Ls0.25). Under steady-state conditions the maximum power output per kilogram wet muscle mass was found to range from 27.5 W in a 10 cm Ls cod to 16.4 W in a 60 cm Ls cod, scaling with Ls−0.29 and body mass (Mb)−0.10 Note: To whom reprint requests should be sent


2011 ◽  
Vol 110-116 ◽  
pp. 273-277
Author(s):  
Rahim Ebrahim ◽  
Mahmoud Reza Tadayon ◽  
Farshad Tahmasebi Gandomkari ◽  
Kamyar Mahbobian

Today, the world community is looking for fuel efficient and environmentally viable alternatives for many of the traditional energy conversion approaches. This development has further worked to increase the technical focus on conventional cycles for making them more optimum in terms of performance. Hence, the objective of this paper is to study the effect of ethanol-air equivalence ratio on the power output and the indicated thermal efficiency of an air standard Otto cycle. Optimization of the cycle has been performed for power output as well as for thermal efficiency with respect to compression ratio. The results show that the maximum power output, the optimal compression ratio corresponding to maximum power output point, the optimal compression ratio corresponding to maximum thermal efficiency point and the working range of the cycle first increase and then decrease as the equivalence ratio increases. The result obtained herein provides a guide to the performance evaluation and improvement for practical Otto engines.


Sign in / Sign up

Export Citation Format

Share Document