Effect of Ethanol-Air Equivalence Ratio on Performance of an Endoreversible Otto Engine

2011 ◽  
Vol 110-116 ◽  
pp. 273-277
Author(s):  
Rahim Ebrahim ◽  
Mahmoud Reza Tadayon ◽  
Farshad Tahmasebi Gandomkari ◽  
Kamyar Mahbobian

Today, the world community is looking for fuel efficient and environmentally viable alternatives for many of the traditional energy conversion approaches. This development has further worked to increase the technical focus on conventional cycles for making them more optimum in terms of performance. Hence, the objective of this paper is to study the effect of ethanol-air equivalence ratio on the power output and the indicated thermal efficiency of an air standard Otto cycle. Optimization of the cycle has been performed for power output as well as for thermal efficiency with respect to compression ratio. The results show that the maximum power output, the optimal compression ratio corresponding to maximum power output point, the optimal compression ratio corresponding to maximum thermal efficiency point and the working range of the cycle first increase and then decrease as the equivalence ratio increases. The result obtained herein provides a guide to the performance evaluation and improvement for practical Otto engines.

2011 ◽  
Vol 110-116 ◽  
pp. 267-272 ◽  
Author(s):  
Rahim Ebrahim

Energy conservation and its efficient use are nowadays a major issue. The evident reduction in oil reserves combined with the increase in its price, as well as the need for ‘cleaner’ fuels, have led in the past years to an increasing interest and research in the field of alternative fuels for spark ignition engines propulsion. Also, there are interesting to increase the technical focus on conventional cycles for making them more optimum in terms of performance. In this study, a comparative performance analysis and optimisation have been performed for irreversible Otto cycle with ethanol, methanol and gasoline fuels. The results show that the maximum power output, the working range of the cycle, the optimal power output corresponding to maximum thermal efficiency, the optimal thermal efficiency corresponding to maximum power output increase, the compression ratio at the maximum power output and the compression ratio at the maximum thermal efficiency when ethanol-engine operation is changed to gasoline-engine operation. The results obtained in this work can help us to understand how the power output and thermal efficiency are influenced by ethanol and gasoline fuels in an Otto engine.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4175
Author(s):  
Shuangshuang Shi ◽  
Yanlin Ge ◽  
Lingen Chen ◽  
Huijun Feng

Considering nonlinear variation of working fluid’s specific heat with its temperature, finite-time thermodynamic theory is applied to analyze and optimize the characteristics of an irreversible Atkinson cycle. Through numerical calculations, performance relationships between cycle dimensionless power density versus compression ratio and dimensionless power density versus thermal efficiency are obtained, respectively. When the design parameters take certain specific values, the performance differences of reversible, endoreversible and irreversible Atkinson cycles are compared. The maximum specific volume ratio, maximum pressure ratio, and thermal efficiency under the conditions of the maximum power output and maximum power density are compared. Based on NSGA-II, the single-, bi-, tri-, and quadru-objective optimizations are performed when the compression ratio is used as the optimization variable, and the cycle dimensionless power output, thermal efficiency, dimensionless ecological function, and dimensionless power density are used as the optimization objectives. The deviation indexes are obtained based on LINMAP, TOPSIS, and Shannon entropy solutions under different combinations of optimization objectives. By comparing the deviation indexes of bi-, tri- and quadru-objective optimization and the deviation indexes of single-objective optimizations based on maximum power output, maximum thermal efficiency, maximum ecological function and maximum power density, it is found that the deviation indexes of multi-objective optimization are smaller, and the solution of multi-objective optimization is desirable. The comparison results show that when the LINMAP solution is optimized with the dimensionless power output, thermal efficiency, and dimensionless power density as the objective functions, the deviation index is 0.1247, and this optimization objective combination is the most ideal.


2004 ◽  
Vol 96 (4) ◽  
pp. 1277-1284 ◽  
Author(s):  
Roy L. P. G. Jentjens ◽  
Luke Moseley ◽  
Rosemary H. Waring ◽  
Leslie K. Harding ◽  
Asker E. Jeukendrup

The purpose of the present study was to examine whether combined ingestion of a large amount of fructose and glucose during cycling exercise would lead to exogenous carbohydrate oxidation rates >1 g/min. Eight trained cyclists (maximal O2consumption: 62 ± 3 ml·kg-1·min-1) performed four exercise trials in random order. Each trial consisted of 120 min of cycling at 50% maximum power output (63 ± 2% maximal O2consumption), while subjects received a solution providing either 1.2 g/min of glucose (Med-Glu), 1.8 g/min of glucose (High-Glu), 0.6 g/min of fructose + 1.2 g/min of glucose (Fruc+Glu), or water. The ingested fructose was labeled with [U-13C]fructose, and the ingested glucose was labeled with [U-14C]glucose. Peak exogenous carbohydrate oxidation rates were ∼55% higher ( P < 0.001) in Fruc+Glu (1.26 ± 0.07 g/min) compared with Med-Glu and High-Glu (0.80 ± 0.04 and 0.83 ± 0.05 g/min, respectively). Furthermore, the average exogenous carbohydrate oxidation rates over the 60- to 120-min exercise period were higher ( P < 0.001) in Fruc+Glu compared with Med-Glu and High-Glu (1.16 ± 0.06, 0.75 ± 0.04, and 0.75 ± 0.04 g/min, respectively). There was a trend toward a lower endogenous carbohydrate oxidation in Fruc+Glu compared with the other two carbohydrate trials, but this failed to reach statistical significance ( P = 0.075). The present results demonstrate that, when fructose and glucose are ingested simultaneously at high rates during cycling exercise, exogenous carbohydrate oxidation rates can reach peak values of ∼1.3 g/min.


1992 ◽  
Vol 170 (1) ◽  
pp. 143-154 ◽  
Author(s):  
M. ELIZABETH ANDERSON ◽  
IAN A. JOHNSTON

Fast muscle fibres were isolated from abdominal myotomes of Atlantic cod (Gadus morhua L.) ranging in size from 10 to 63 cm standard length (Ls). Muscle fibres were subjected to sinusoidal length changes about their resting length (Lf) and stimulated at a selected phase of the strain cycle. The work performed in each oscillatory cycle was calculated from plots of force against muscle length, the area of the resulting loop being net work. Strain and the number and timing of stimuli were adjusted to maximise positive work per cycle over a range of cycle frequencies at 8°C. Force, and hence power output, declined with increasing cycles of oscillation until reaching a steady state around the ninth cycle. The strain required for maximum power output (Wmax) was ±7-11% of Lf in fish shorter than 18 cm standard length, but decreased to ±5 % of Lf in larger fish. The cycle frequency required for Wmax also declined with increasing fish length, scaling to Ls−0.51 under steady-state conditions (cycles 9–12). At the optimum cycle frequency and strain the maximum contraction velocity scaled to Ls−0.79. The maximum stress (Pmax) produced within a cycle was highest in the second cycle, ranging from 51.3 kPa in 10 cm fish to 81.8 kPa in 60 cm fish (Pmax=28.2Ls0.25). Under steady-state conditions the maximum power output per kilogram wet muscle mass was found to range from 27.5 W in a 10 cm Ls cod to 16.4 W in a 60 cm Ls cod, scaling with Ls−0.29 and body mass (Mb)−0.10 Note: To whom reprint requests should be sent


Sign in / Sign up

Export Citation Format

Share Document