Three-dimensional Non-detection Zone for Assessing Anti-islanding Detection Schemes

2010 ◽  
Vol 38 (6) ◽  
pp. 621-636 ◽  
Author(s):  
Hatem H. Zeineldin ◽  
Ahmed Saif ◽  
Magdy M. A. Salama ◽  
A. F. Zobaa
2018 ◽  
Vol 7 (1.8) ◽  
pp. 228 ◽  
Author(s):  
Gundala Srinivasa Rao ◽  
G. Kesava Rao

The penetration of Distributed generation (DG) ensures the increase of demand for consistent, reasonable and spotless electricity facing with some design and operational challenges such as islanding. Several active and passive methods have been suggested in the past to detect islanding. Since they suffer from the large non detection zone and a high cost. In order to defeat such issues we propose a SVM based pattern recognising approach for islanding detection in a multiple DG system. The results show that our proposed method detects islanding with high accuracy.


Author(s):  
Zhengyuan Guan ◽  
Yuan Liao

Abstract This paper presents a new composite approach based on wavelet-transform and ANN for islanding detection of distributed generation (DG). The proposed method first uses wavelet-transform to detect the occurrence of events, and then uses artificial neural network (ANN) to classify islanding and non-islanding events. Total harmonic distortion and voltage unbalance are extracted as feature inputs for ANN classifier. The performance of the proposed method is tested by simulations for two typical distribution networks based on MATLAB/Simulink. The results show that the developed method can effectively detect islanding with low misclassification. The method has the advantages of small non-detection zone and robustness against noises.


Author(s):  
Bhatraj Anudeep ◽  
Paresh Kumar Nayak

Abstract In distributed generation (DG) systems, the rate of change of voltage and the rate of change of frequency are the two most common and widely used simple and low-cost passive islanding detection schemes. Unfortunately, these passive islanding detection schemes find limitation for detecting the islandings that cause very small power imbalance. In this paper, an improved passive islanding detection scheme is proposed by using the two newly derived indices from the sequence components of the current signal with the conventional voltage and frequency parameters. The performance of the proposed scheme is tested for numerous islanding and non-islanding cases generated on IEEE Std 399–1997 and IEC microgrid model distribution system integrated with both inverter-interfaced and synchronous DGs through PSCAD/EMTDC. The obtained results confirm the effectiveness of the proposed scheme.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 460
Author(s):  
José Antonio Cebollero ◽  
David Cañete ◽  
Susana Martín-Arroyo ◽  
Miguel García-Gracia ◽  
Helder Leite

Detection of unintentional islanding is critical in microgrids in order to guarantee personal safety and avoid equipment damage. Most islanding detection techniques are based on monitoring and detecting abnormalities in magnitudes such as frequency, voltage, current and power. However, in normal operation, the utility grid has fluctuations in voltage and frequency, and grid codes establish that local generators must remain connected if deviations from the nominal values do not exceed the defined thresholds and ramps. This means that islanding detection methods could not detect islanding if there are fluctuations that do not exceed the grid code requirements, known as the non-detection zone (NDZ). A survey on the benefits of islanding detection techniques is provided, showing the advantages and disadvantages of each one. NDZs size of the most common passive islanding detection methods are calculated and obtained by simulation and compared with the limits obtained by ENTSO-E and islanding standards in the function of grid codes requirements in order to compare the effectiveness of different techniques and the suitability of each one.


Sign in / Sign up

Export Citation Format

Share Document