Implementation of reliable high-speed islanding detection, zone interlocking, and source selection schemes using smart algorithms

Author(s):  
Faridul Katha Basha ◽  
Ramanathan Palaniappan ◽  
Ashok Balasubramanian ◽  
RadhaKiranMaye Anne ◽  
Michael J. Thompson ◽  
...  

2018 ◽  
Vol 7 (1.8) ◽  
pp. 228 ◽  
Author(s):  
Gundala Srinivasa Rao ◽  
G. Kesava Rao

The penetration of Distributed generation (DG) ensures the increase of demand for consistent, reasonable and spotless electricity facing with some design and operational challenges such as islanding. Several active and passive methods have been suggested in the past to detect islanding. Since they suffer from the large non detection zone and a high cost. In order to defeat such issues we propose a SVM based pattern recognising approach for islanding detection in a multiple DG system. The results show that our proposed method detects islanding with high accuracy.



Author(s):  
Zhengyuan Guan ◽  
Yuan Liao

Abstract This paper presents a new composite approach based on wavelet-transform and ANN for islanding detection of distributed generation (DG). The proposed method first uses wavelet-transform to detect the occurrence of events, and then uses artificial neural network (ANN) to classify islanding and non-islanding events. Total harmonic distortion and voltage unbalance are extracted as feature inputs for ANN classifier. The performance of the proposed method is tested by simulations for two typical distribution networks based on MATLAB/Simulink. The results show that the developed method can effectively detect islanding with low misclassification. The method has the advantages of small non-detection zone and robustness against noises.



2010 ◽  
Vol 38 (6) ◽  
pp. 621-636 ◽  
Author(s):  
Hatem H. Zeineldin ◽  
Ahmed Saif ◽  
Magdy M. A. Salama ◽  
A. F. Zobaa


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 460
Author(s):  
José Antonio Cebollero ◽  
David Cañete ◽  
Susana Martín-Arroyo ◽  
Miguel García-Gracia ◽  
Helder Leite

Detection of unintentional islanding is critical in microgrids in order to guarantee personal safety and avoid equipment damage. Most islanding detection techniques are based on monitoring and detecting abnormalities in magnitudes such as frequency, voltage, current and power. However, in normal operation, the utility grid has fluctuations in voltage and frequency, and grid codes establish that local generators must remain connected if deviations from the nominal values do not exceed the defined thresholds and ramps. This means that islanding detection methods could not detect islanding if there are fluctuations that do not exceed the grid code requirements, known as the non-detection zone (NDZ). A survey on the benefits of islanding detection techniques is provided, showing the advantages and disadvantages of each one. NDZs size of the most common passive islanding detection methods are calculated and obtained by simulation and compared with the limits obtained by ENTSO-E and islanding standards in the function of grid codes requirements in order to compare the effectiveness of different techniques and the suitability of each one.



Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2421
Author(s):  
Xinxin Zheng ◽  
Rui Zhang ◽  
Xi Chen ◽  
Nong Sun

This paper proposes an improved active frequency drift (AFD) islanding detection method of a three-phase inverter. Different than the existing single-phase AFD method, in the three-phase system, the disturbance is added to the phase angle, which takes part in coordinate transformation calculations. Thus, the frequency drift of the three-phase reference current can be realized by the disturbance of the phase angle. It is unnecessary to add frequency drift to each phase respectively with the proposed method, which can simplify the control system. Furthermore, the non-detection zone can be eliminated by updating certain parameters; therefore, the detection method is sensitive. In this paper, the application of the proposed method in a digital control system is discussed in detail. The non-detection zone is analyzed, and an elimination method is proposed. Finally, the simulation and experimental results are given to verify the theoretical analysis.



Author(s):  
Abbineni Sai Subhadra ◽  
P.Linga Reddy ◽  
Shailesh . B Modi

Islanding detection of Distributed Generation (DG) is considered as one of the most important aspects when interconnecting DGs to the distribution system. It was the crucial problem in distributed generation. This detection phenomenon having a great importance. These detection methods are divided into active and passive islanding detection. These two methods are based on changing in parameters such as frequency, voltage and current harmonics. But these methods have some challenges such as reduction in power quality and large Non Detection Zone (NDZ). In this paper, the proposed method is change of Total harmonic distortion (THD) will be studied for islanding detection diagnosis. The studied system was considered by following the standard IEEE-1547 and UL-1741.The system was simulated using MATLAB/ SIMULINK.



2019 ◽  
Vol 2 (3) ◽  
pp. 25 ◽  
Author(s):  
Ashish Shrestha ◽  
Roshan Kattel ◽  
Manish Dachhepatic ◽  
Bijen Mali ◽  
Rajiv Thapa ◽  
...  

The issue of unintentional islanding in grid interconnection still remains a challenge in grid-connected, Distributed Generation System (DGS). This study discusses the general overview of popular islanding detection methods. Because of the various Distributed Generation (DG) types, their sizes connected to the distribution networks, and, due to the concern associated with out-of-phase reclosing, anti-islanding continues to be an issue, where no clear solution exists. The passive islanding detection technique is the simplest method to detect the islanding condition which compares the existing parameters of the system having some threshold values. This study first presents an auto-ground approach, which is based on the application of three-phase, short-circuit to the islanded distribution system just to reclose and re-energize the system. After that, the data mining-decision tree algorithm is implemented on a typical distribution system with multiple DGs. The results from both of the techniques have been accomplished and verified by determining the Non-Detection Zone (NDZ), which satisfies the IEEE standards of 2 s execution time. From the analysis, it is concluded that the decision tree approach is effective and highly accurate to detect the islanding state in DGs. These simulations in detail compare the old and new methods, clearly highlighting the progress in the field of islanding detection.



Sign in / Sign up

Export Citation Format

Share Document