Balancing Switching Losses in Three-phase, Five-level Pulse-width Modulation Switched Voltage Source Inverter Using Hybrid Modulation Techniques

2014 ◽  
Vol 42 (11) ◽  
pp. 1194-1200 ◽  
Author(s):  
Charles Ikechukwu Odeh
Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3884
Author(s):  
Jian Zheng ◽  
Mingcheng Lyu ◽  
Shengqing Li ◽  
Qiwu Luo ◽  
Keyuan Huang

Aiming at the problem of large magnitude and high frequency of common-mode voltage (CMV) when space vector pulse width modulation (SVPWM) is used in a three-phase motor fed by a two-level voltage source inverter, a common-mode reduction SVPWM (CMRSVPWM) is studied. In this method, six new sectors are obtained by rotating six sectors of conventional SVPWM by 30°. In odd-numbered sectors, only three non-zero vectors with odd subscripts are used for synthesis, while in even-numbered sectors, only three non-zero vectors with even subscripts are used for synthesis. The actuation durations of three non-zero vectors in each switching period in each sector are given. Simulation and experimental results show that, compared with the conventional SVPWM, the CMV magnitude of CMRSVPWM is reduced by 66.67% and the CMV frequency of CMRSVPWM is reduced from the original switching frequency to the triple fundamental frequency. At the same time, the current, torque and speed of the motor are still good.


2021 ◽  
Vol 23 (06) ◽  
pp. 1682-1698
Author(s):  
Laxmi Singh ◽  
◽  
Dr. Imran ◽  

The model of a three-phase voltage source inverter is examined based on space vector theory. SVPWM offers an improved outcome with the inverter as compared to the conservative SPWM technique for the inverter. There is a 15.5% upsurge in the line voltage of the inverter. SVPWM better exploits the available DC-link power with the SVPWM inverter. It has been revealed that the SVPWM method utilizes DC bus voltage extra competently and produces a smaller amount of harmonic distortion and easier digital realization in a three-phase voltage-source inverter. For converter‘s gating signals generation, the space-vector pulse width modulation (SVPWM) strategy lessens the switching losses by restricting the switching to two-thirds of the pulse duty cycle. A hypothetical study regarding the use of the SVPWM the three-level voltage inverter and simulation results are offered to prove the usefulness of the SVPWM in the involvement in the switching power losses lessening, output voltages with fewer harmonics. Nevertheless, despite all the above-cited benefits that SVPWM enjoys over SPWM, the SVPWM technique used in three-level inverters is more difficult on account of a large number of inverter switching states. The attained simulation outcomes were satisfactory. As prospects, future experimental works will authenticate the simulation results. A software simulation model is developed in Matlab/Simulink.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
L. U. Sudha ◽  
J. Baskaran ◽  
S. A. Elankurisil

This paper corroborates three different hybrid modulation strategies suitable for single-phase voltage source inverter. The proposed method is formulated using fundamental switching and carrier based pulse width modulation methods. The main tale of this proposed method is to optimize a specific performance criterion, such as minimization of the total harmonic distortion (THD), lower order harmonics, switching losses, and heat losses. The proposed method is articulated using fundamental switching and carrier based pulse width modulation methods. Thus, the harmonic pollution in the power system will be reduced and the power quality will be augmented with better harmonic profile for a target fundamental output voltage. The proposed modulation strategies are simulated in MATLAB r2010a and implemented in a Xilinx spartan 3E-500 FG 320 FPGA processor. The feasibility of these modulation strategies is authenticated through simulation and experimental results.


Sign in / Sign up

Export Citation Format

Share Document