Non-invasive microwave hyperthermia for bone cancer treatment using realistic bone models and flexible antenna arrays

Author(s):  
M. Dilruba Geyikoglu ◽  
Bulent Cavusoglu
Author(s):  
Hamil Shah ◽  
Abdullahi Inshaar ◽  
Chengzhe Zou ◽  
Shreyas Chaudhari ◽  
Saad Alharbi ◽  
...  

Physical deformation mechanisms are emerging as compelling and simple ways to adapt radio frequency (RF) characteristics of antennas in contrast to digital steering approaches acting on topologically fixed antennas. Concepts of physical reconfigurability also enable exceptional capabilities such as deployable and morphing antenna arrays that serve multiple functions and permit compact transport with ease. Yet, the emergent concepts lack broad understanding of effective approaches to integrate conformal, electrically conductive architectures with high-compliance foldable frameworks. To explore this essential interface where electrical demands and mechanical requirements may conflict, this research introduces a new class of origami-based tessellated antennas whose RF characteristics are self-tuned by physical reconfiguration of the antenna shape. E-textile materials are used to permit large antenna shape change while maintaining electrical conductivity. Dipole and patch antennas are considered as conventional antenna platforms upon which to innovate with the e-textile origami concept. Multiphysics modeling efforts establish the efficacy of foldable antenna geometries for broad tailoring of the RF characteristics. Experiments with proof-of-concept antennas confirm the large adaptability of wave radiation properties enabled by the reconfiguration of the e-textile origami surfaces. The results suggest that e-textile antennas can be integrated into clothing and mechanical structures, providing a non-invasive way of quantifying deformation for a wide range of applications.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1720
Author(s):  
Haopeng Han ◽  
Thomas Wilhelm Eigentler ◽  
Shuailin Wang ◽  
Egor Kretov ◽  
Lukas Winter ◽  
...  

Thermal Magnetic Resonance (ThermalMR) leverages radio frequency (RF)-induced heating to examine the role of temperature in biological systems and disease. To advance RF heating with multi-channel RF antenna arrays and overcome the shortcomings of current RF signal sources, this work reports on a 32-channel modular signal generator (SGPLL). The SGPLL was designed around phase-locked loop (PLL) chips and a field-programmable gate array chip. To examine the system properties, switching/settling times, accuracy of RF power level and phase shifting were characterized. Electric field manipulation was successfully demonstrated in deionized water. RF heating was conducted in a phantom setup using self-grounded bow-tie RF antennae driven by the SGPLL. Commercial signal generators limited to a lower number of RF channels were used for comparison. RF heating was evaluated with numerical temperature simulations and experimentally validated with MR thermometry. Numerical temperature simulations and heating experiments controlled by the SGPLL revealed the same RF interference patterns. Upon RF heating similar temperature changes across the phantom were observed for the SGPLL and for the commercial devices. To conclude, this work presents the first 32-channel modular signal source for RF heating. The large number of coherent RF channels, wide frequency range and accurate phase shift provided by the SGPLL form a technological basis for ThermalMR controlled hyperthermia anti-cancer treatment.


2019 ◽  
Vol 8 (12) ◽  
pp. 2107 ◽  
Author(s):  
Davide B. Gissi ◽  
Achille Tarsitano ◽  
Andrea Gabusi ◽  
Roberto Rossi ◽  
Giuseppe Attardo ◽  
...  

Background: This study aimed to evaluate the prognostic value of a non-invasive sampling procedure based on 13-gene DNA methylation analysis in the follow-up of patients previously treated for oral squamous cell carcinoma (OSCC). Methods: The study population included 49 consecutive patients treated for OSCC. Oral brushing sample collection was performed at two different times: before any cancer treatment in the tumor mass and during patient follow-up almost 6 months after OSCC treatment, within the regenerative area after OSCC resection. Each sample was considered positive or negative in relation to a predefined cut-off value. Results: Before any cancer treatment, 47/49 specimens exceeded the score and were considered as positive. Six months after OSCC resection, 16/49 specimens also had positive scores in the samples collected from the regenerative area. During the follow-up period, 7/49 patients developed locoregional relapse: 6/7 patients had a positive score in the regenerative area after OSCC resection. The presence of a positive score after oral cancer treatment was the most powerful variable related to the appearance of locoregional relapse. Conclusion: 13-gene DNA methylation analysis by oral brushing may have a clinical application as a prognostic non-invasive tool in the follow-up of patients surgically treated for OSCC.


Sign in / Sign up

Export Citation Format

Share Document