Dynamic stress responses of defects in periodic heterogeneous media under SH waves

Author(s):  
Yun Zhu ◽  
Zai-lin Yang ◽  
Jian Zhao ◽  
Qi-lin Feng ◽  
Yi-cun Chen
1972 ◽  
Vol 62 (2) ◽  
pp. 541-550
Author(s):  
R. S. Sidhu

abstract This paper studies the generation of axially symmetric transient SH waves in semi-infinite heterogeneous media in which μ and ρ vary with depth. The sources generating these waves are taken in the form of time-dependent torsional-body forces of finite dimensions. The solution is obtained using Hankel and Laplace transforms and Green's function. The disturbance from a buried point source of impulsive type is discussed in two cases, (a) μ = μo(1 + ɛz)2, ρ = ρo (1 + ɛz)2, (b) μ = μoe2az, ρ = ρoe2az. It is shown that, in contrast to the results for a homogeneous medium, in case (i), the wave reflected by the free surface generates secondary disturbances which trail behind the wave front and die out as t increases; the incident wave in this medium generates no such disturbance. In case (ii), however, both the incident as well as the reflected waves generate secondary disturbances. Formal solution for the disturbance in a heterogeneous layer of finite depth with stress-free boundaries is discussed in Appendix II.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Hui Qi ◽  
Yang Zhang ◽  
Jing Guo ◽  
Fuqing Chu ◽  
Mehmet Serkan Kirgiz

It is necessary to study the problem of seismic wave scattering in composite stratum for tunnel engineering because the existence of composite strata will make the stress of tunnels more complicated during earthquakes. In this thesis, a series solution of the scattering wave field of the composite strata and lining is obtained using the complex function method. According to the stress and displacement boundary conditions between the composite stratum and the lining, a series of equations are established and are solved by means of Fourier transformation and finite term truncation, and the calculation errors are also discussed. Through programming calculations, the dynamic stress concentration factor (DSCF) of circular tunnels in the two types of composite strata, “hard-over-soft” and “soft-over-hard,” is analyzed when SH waves propagate, and certain conclusions on the scattering of SH waves that are distinguished from the case of single homogeneous layers are reached. The research in this article reveals some phenomena. For the Q345 steel lining in the calculation examples, it is found in this paper that increasing the thickness of the lining is effective to reduce the influence of the DSCF. But, for C30 concrete, increasing the thickness of the lining reduces the DSCF of the outer surface while increasing the DSCF of the inner surface.


2012 ◽  
Vol 627 ◽  
pp. 698-704
Author(s):  
Zhi Ying Ou ◽  
Xiao Wei Liu ◽  
Qiong Deng

When the radius of materials and structral devices reduces to nanometers, the influence of surface energy becomes prominent in its mechanical behavior. In the frame of surface elasticity, the scattering of anti-plan shear waves by an elastic half-plan with a semi-cylindrical cavity considered the surface energy are investigated in this paper. When the boundary condition at the straight edge of the half-plan is traction free, the analytical solutions of stress fields of the half plan with semi-culindrical cavity are expressed by employing a wave function expansion method. The results show that surface energy has a significant effect on the scattering of anti-plan shear waves as the radius of the semi-cylindrical cavity shrinks to nanoscale. The effects of incident waves with different frequencies and incident angel, radius of semi-cylindrical cavity and surface energy on the dynamic stress concentration around the semi-cylindrical cavity are discussed in detail.


2010 ◽  
Vol 118-120 ◽  
pp. 962-966
Author(s):  
Lian Wan Zhang ◽  
Zhong Jun Yin ◽  
Xin Sun ◽  
Zhi Chao Tang

This paper is based on the scientific modeling of large-scale elliptical vibrating screen which is widely used in many fields. Through the tool of harmonic analysis in ANSYS, the dynamic stress responses during steady state and transient process are studied. The results confirmed that the existing structure can fulfill the requirement of dynamic stress level. Another contribution of this paper is to provide a new idea to analyze the transient process response, especially when the motor data are not sure.


2007 ◽  
Vol 348-349 ◽  
pp. 357-360
Author(s):  
Qi Hui ◽  
Jia Xi Zhao

The scattering of SH waves by a cylindrical elastic inclusion with a semicircular disconnected curve and linear cracks in an homogeneous medium is investigated and the solution of dynamic stress intensity factor is given by Green’s function, complex function method. Firstly, we can divide the space into up-and-down parts along the X axis. In the lower half space, a new suitable Green’s function for the present problem is constructed.In the upper half space, the Green’s function has been given by reference [5]. Thereby the semicircular disconnected curve can be constructed when the two parts are bonded along the interface and the linear cracks can be constructed using the method of crack-division and the integral equations can be obtained by the use of continuity conditions at the X axis. Finally, some examples and results of dynamic stress intensify factor are given and the influence of the parameters is discussed.


2007 ◽  
Vol 353-358 ◽  
pp. 38-41
Author(s):  
Xin Gang Li ◽  
Cheng Jin ◽  
Li Zhang ◽  
Da Yong Chu

In this paper, the behavior of a finite crack in an infinite plate of functionally graded materials (FGM) with free boundary subjected to SH-waves is considered. To make the analysis tractable, it is assumed that the material properties vary exponentially with the thickness direction and the problem is transformed into a dual integrated equation with the method of integral transform. The dynamic stress intensity factor is obtained using Schmidt method. The numerical examples are presented to demonstrate this numerical technique for SH-waves propagating in FGM plate. Finally the number of the waves, the gradient parameter of FGM and the angle of the incidence upon the dynamic stress intensity factor are also given.


2010 ◽  
Vol 452-453 ◽  
pp. 677-680
Author(s):  
Hong Liang Li ◽  
Hong Li

Multiple circular inclusions exists widely in natural media, engineering materials and modern municipal construction, and defects are usually found around the inclusions. When composite material with multiple circular inclusions and a crack is impacted by dynamic load, the scattering field will be produced. The problem of scattering of SH waves by multiple circular inclusions and a linear crack is one of the important and interesting questions in mechanical engineering and civil engineering for the latest decade. It is hard to obtain analytic solutions except for several simple conditions. In this paper, the method of Green’s function is used to investigate the problem of dynamic stress concentration of multiple circular inclusions and a linear crack for incident SH wave. The train of thoughts for this problem is that: Firstly, a Green’s function is constructed for the problem, which is a fundamental solution of displacement field for an elastic space possessing multiple circular inclusions while bearing out-of-plane harmonic line source force at any point: Secondly, in terms of the solution of SH-wave’s scattering by an elastic space with multiple circular inclusions, anti-plane stresses which are the same in quantity but opposite in direction to those mentioned before, are loaded at the region where the crack is in existent actually; Finally, the expressions of the displacement and stress are given when multiple circular inclusions and a linear crack exist at the same time. Then, by using the expression, an example is provided to show the effect of multiple circular inclusions and crack on the dynamic stress concentration.


Sign in / Sign up

Export Citation Format

Share Document