Thermo-elastic response of 2D-FGRPs with temperature-dependent material properties by means of the theory of elasticity

Author(s):  
Munise Didem Demirbas
1999 ◽  
Author(s):  
Jeff M. Mendoza ◽  
Hoang Pham

Abstract This study addresses the elastic response of a submerged plate coated with multiple layers of elastomeric materials. of interest is the extent at which the mechanism of interaction between dissimilar elastomers can be modified through selection of material properties. Such modification can optimize the received signal response at the sensors in the presence of a turbulent boundary layer (TBL) as well as provide insight into advantageous TBL and structure-borne vibration decoupling configurations. The analytical model is an infinite multilayer composite of steel and viscoelastic materials separating the semi-infinite media of water (external) and air (internal). The theory of elasticity expedites the analysis of elastic response, governed by dilatational and shear motion, in each layer. The analysis considers excitation by an incident plane wave in addition to a fully developed TBL both in the water medium. A series of numerical simulations based on material properties of well-characterized elastomers quantify the degree at which this coupling mechanism can be optimized in applications of noise and vibration reduction.


2016 ◽  
Vol 18 (31) ◽  
pp. 21508-21517 ◽  
Author(s):  
Xiao-Ye Zhou ◽  
Bao-Ling Huang ◽  
Tong-Yi Zhang

Surfaces of nanomaterials play an essential role in size-dependent material properties.


Sign in / Sign up

Export Citation Format

Share Document