scholarly journals Effect of Aging on Brain Injury Prediction in Rotational Head Trauma—A Parameter Study with a Rat Finite Element Model

2015 ◽  
Vol 16 (sup1) ◽  
pp. S91-S99 ◽  
Author(s):  
Jacobo Antona-Makoshi ◽  
Erik Eliasson ◽  
Johan Davidsson ◽  
Susumu Ejima ◽  
Koshiro Ono
2010 ◽  
Vol 55 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Marc Hoffstetter ◽  
Florian Schardt ◽  
Thomas Lenarz ◽  
Sabine Wacker ◽  
Erich Wintermantel

2015 ◽  
Vol 18 (2) ◽  
pp. 65-73 ◽  
Author(s):  
Kui Li ◽  
Jiawen Wang ◽  
Shengxiong Liu ◽  
Sen Su ◽  
Chenjian Feng ◽  
...  

Author(s):  
Travis Eliason ◽  
Loren Francis ◽  
Todd Bredbenner ◽  
Brian Stemper ◽  
Dan Nicolella ◽  
...  

Injury prediction and mitigation are common overarching goals of modern biomechanical research. This research is fundamental to preventing and mitigating injuries sustained by those exposed to dangerous conditions including but not limited to occupational hazards, warfighter risks, automotive accidents, etc. Unlike traditional mechanical system research, biological systems are difficult and costly to test resulting in a need for robust and accurate numerical simulations. Models of the cervical spine are complex, nonlinear systems that must accurately model dynamic loading, large deflections, elastic, and viscoelastic behavior. In addition to individual complexities, population variance in both material properties and shape must be taken into account for accurate injury prediction. As part of a hierarchical validation and verification (V&V) methodology, lateral impact cadaveric cervical spine experiments were compared to a high fidelity statistical shape finite element model (SSFEM) of the cervical spine and head. Specimens were mounted to a sled and accelerated using a pendulum impact with 1, 2, and 3 m/s impact velocities. The kinematics of the head and all individual cervical vertebrae were recorded with a Vicon motion capture system along with sled acceleration data. Sled accelerations were used as input boundary conditions for the probabilistic study using the SSFEM. Head and vertebrae rotations between the experimental and model responses were then compared. A latin hypercube probabilistic analysis was performed for each impact velocity to determine the probabilistic response of each rotation metric. When comparing these responses, both the average and variation must be taken into consideration. This is accomplished using a quantitative validation metric based on the area between the cumulative distribution functions (CDF) of experimental response and the computed probabilistic response. Our results showed a very good match between the model and experiment at the higher impact velocities and a slightly stiffer response at lower rates. These results are consistent with previous validation studies performed with this SSFEM. By expanding the validation data set with lateral impact loading, greater confidence in the model is obtained under different loading modes. This confidence allows the model to be used for probability of injury predictions as well as to identify important system variables in preventing injuries. High fidelity numeric modeling allows for rapid and cost effective assessment of hazardous loading conditions and safety equipment compared to experimental modeling. The knowledge gained from these modeling studies is fundamental and necessary for safe and effective design and injury mitigation.


Author(s):  
Chao Yu ◽  
Fang Wang ◽  
Bingyu Wang ◽  
Guibing Li ◽  
Fan Li

It has been challenging to efficiently and accurately reproduce pedestrian head/brain injury, which is one of the most important causes of pedestrian deaths in road traffic accidents, due to the limitations of existing pedestrian computational models, and the complexity of accidents. In this paper, a new coupled pedestrian computational biomechanics model (CPCBM) for head safety study is established via coupling two existing commercial pedestrian models. The head–neck complex of the CPCBM is from the Total Human Model for Safety (THUMS, Toyota Central R&D Laboratories, Nagakute, Japan) (Version 4.01) finite element model and the rest of the parts of the body are from the Netherlands Organisation for Applied Scientific Research (TNO, The Hague, The Netherlands) (Version 7.5) multibody model. The CPCBM was validated in terms of head kinematics and injury by reproducing three cadaveric tests published in the literature, and a correlation and analysis (CORA) objective rating tool was applied to evaluate the correlation of the related signals between the predictions using the CPCBM and the test results. The results show that the CPCBM head center of gravity (COG) trajectories in the impact direction (YOZ plane) strongly agree with the experimental results (CORA ratings: Y = 0.99 ± 0.01; Z = 0.98 ± 0.01); the head COG velocity with respect to the test vehicle correlates well with the test data (CORA ratings: 0.85 ± 0.05); however, the correlation of the acceleration is less strong (CORA ratings: 0.77 ± 0.06). No significant differences in the behavior in predicting the head kinematics and injuries of the tested subjects were observed between the TNO model and CPCBM. Furthermore, the application of the CPCBM leads to substantial reduction of the computation time cost in reproducing the pedestrian head tissue level injuries, compared to the full-scale finite element model, which suggests that the CPCBM could present an efficient tool for pedestrian brain-injury research.


Sign in / Sign up

Export Citation Format

Share Document