3D transient elasto-plastic finite element analysis of a flatted railway wheel in rolling contact

2018 ◽  
Vol 46 (6) ◽  
pp. 751-766 ◽  
Author(s):  
Hossein Alizadeh Otorabad ◽  
Parisa Hosseini Tehrani ◽  
Davood Younesian
2008 ◽  
Vol 575-578 ◽  
pp. 1461-1466
Author(s):  
Byeong Choon Goo ◽  
Jung Won Seo

Railcar wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles have been more severe in recent years due to speed-up. Therefore, a more precise evaluation of railcar wheel life and safety has been requested. Wheel/rail contact fatigue and thermal cracks due to braking are two major mechanisms of the railcar wheel failure. One of the main sources influencing on the contact zone failure is residual stress. The residual stress in wheels formed during heat treatment in manufacturing changes in the process of braking. Thus the fatigue life of railcar wheels should be estimated by considering both thermal stress and rolling contact. Also, the effect of residual stress variation due to manufacturing process and braking process should be included in simulating contact fatigue behavior. In this paper, an evaluation procedure for the contact fatigue life of railcar wheels considering the effects of residual stresses due to heat treatment, braking and repeated contact load is proposed. And the cyclic stressstrain history for fatigue analysis is simulated by finite element analysis for the moving contact load.


2013 ◽  
Vol 768-769 ◽  
pp. 714-722 ◽  
Author(s):  
Andreas Konrad ◽  
Wolfgang Nierlich ◽  
Jürgen Gegner

Mixed friction acting in a rolling contact increases the v. Mises equivalent stress and shifts the maximum towards the surface. Tangential stresses are superimposed to the stress distribution. The resulting position of the maximum v. Mises stress depends on the magnitude of the friction coefficient and is located directly on the surface from values of about 0.25 upwards. The impact of three-dimensional machine vibrations on rolling bearings in operation can cause severe mixed friction running conditions. Residual stress distributions measured on indentation-free raceways indicate high friction coefficients of up to greater than 0.25. The surfaces reveal smoothing of the finishing structure but no adhesive wear. The simulation of the vibrationally loaded rolling-sliding contact is based on the tribological model of localized friction coefficient. This approach avoids seizing by allowing for increased friction only in intermittently changing subareas of the contact at low sliding speed. The macroscopic friction coefficient, meeting a mixing rule, does not exceed 0.1. The finite element method (FEM) is used for the stress analysis. In the first step, a simplified FEM model involves a circumferentially oriented band of high friction coefficient from 0.2 to 0.5 within a cylindrical roller contact. The resulting depth distributions of the v. Mises equivalent stress during overrolling and the corresponding residual stresses are evaluated below the inner ring raceway of the bearing. The features of the FEM model are discussed in detail. The increased sliding friction in the band shifts the maximum of the v. Mises equivalent stress to the surface. Compressive residual stresses are induced in the edge zone. Depending on the applied Hertzian pressure, an additional subsurface peak occurs. First results of the finite element analysis are presented.


Author(s):  
Christian Buzzi ◽  
◽  
Andreas Dutzler ◽  
Martin Leitner ◽  
◽  
...  

Railways can transport cargo and persons a great distance. The combination of high axle loads, and the rigid wheels and rails made of steel results in high stresses at the wheel-rail contact. These high stresses cause rolling contact fatigue. To prevent and to forecast the rolling contact fatigue, the knowledge of the stresses and their effect on the local damage are important. One possible way to achieve results of the stresses is based on a finite element analysis. The calculation of the rolling contact fatigue is conducted subsequently. This paper will present one possibility to implement the damage calculation into a finite element software and use the post-processing to enable a fast assessment of rolling contact fatigue on the surface and the adjacent volume of a rail.


2010 ◽  
Author(s):  
Rifky Ismail ◽  
Muhammad Tauviqirrahman ◽  
Jamari ◽  
Dirk J. Schipper ◽  
Khairurrijal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document