scholarly journals Using Biological Networks in Protein Function Prediction and Gene Expression Analysis

2011 ◽  
Vol 7 (4) ◽  
pp. 274-298 ◽  
Author(s):  
Limsoon Wong
2013 ◽  
pp. 637-663
Author(s):  
Bing Zhang ◽  
Zhiao Shi

One of the most prominent properties of networks representing complex systems is modularity. Network-based module identification has captured the attention of a diverse group of scientists from various domains and a variety of methods have been developed. The ability to decompose complex biological systems into modules allows the use of modules rather than individual genes as units in biological studies. A modular view is shaping research methods in biology. Module-based approaches have found broad applications in protein complex identification, protein function prediction, protein expression prediction, as well as disease studies. Compared to single gene-level analyses, module-level analyses offer higher robustness and sensitivity. More importantly, module-level analyses can lead to a better understanding of the design and organization of complex biological systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Arvind Kumar Tiwari ◽  
Rajeev Srivastava

During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction.


Author(s):  
Bing Zhang ◽  
Zhiao Shi

One of the most prominent properties of networks representing complex systems is modularity. Network-based module identification has captured the attention of a diverse group of scientists from various domains and a variety of methods have been developed. The ability to decompose complex biological systems into modules allows the use of modules rather than individual genes as units in biological studies. A modular view is shaping research methods in biology. Module-based approaches have found broad applications in protein complex identification, protein function prediction, protein expression prediction, as well as disease studies. Compared to single gene-level analyses, module-level analyses offer higher robustness and sensitivity. More importantly, module-level analyses can lead to a better understanding of the design and organization of complex biological systems.


2020 ◽  
Author(s):  
Meet Barot ◽  
Vladimir Gligorijevic ◽  
Kyunghyun Cho ◽  
Richard Bonneau

Transferring knowledge between species is challenging: different species contain distinct proteomes and cellular architectures, which cause their proteins to carry out different functions via different interaction networks. Many approaches to proteome and biological network functional annotation use sequence similarity to transfer knowledge between species. These similarity-based approaches cannot produce accurate predictions for proteins without homologues of known function, as many functions require cellular or organismal context for meaningful function prediction. In order to supply this context, network-based methods use protein-protein interaction (PPI) networks as a source of information for inferring protein function and have demonstrated promising results in function prediction. However, the majority of these methods are tied to a network for a single species, and many species lack biological networks. In this work, we integrate sequence and network information across multiple species by applying an IsoRank-derived network alignment algorithm to create a meta-network profile of the proteins of multiple species. We then use this integrated multispecies meta-network as input features to train a maxout neural network with Gene Ontology terms as target labels. Our multispecies approach takes advantage of more training examples, and more diverse examples from multiple organisms, and consequently leads to significant improvements in function prediction performance. Further, we evaluate our approach in a setting in which an organism's PPI network is left out, using other organisms' network information and sequence homology in order to make predictions for the left-out organism, to simulate cases in which a newly sequenced species has no network information available.


Sign in / Sign up

Export Citation Format

Share Document