A prediction model with wavelet neural network optimized by the chicken swarm optimization for on-ramps metering of the urban expressway

Author(s):  
Yusheng Ci ◽  
Hailong Wu ◽  
Yichen Sun ◽  
Lina Wu
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2998
Author(s):  
Xinyong Zhang ◽  
Liwei Sun

Fit of the highly nonlinear functional relationship between input variables and output response is important and challenging for the optical machine structure optimization design process. The backpropagation neural network method based on particle swarm optimization and Bayesian regularization algorithms (called BMPB) is proposed to solve this problem. A prediction model of the mass and first-order modal frequency of the supporting structure is developed using the supporting structure as an example. The first-order modal frequency is used as the constraint condition to optimize the lightweight design of the supporting structure’s mass. Results show that the prediction model has more than 99% accuracy in predicting the mass and the first-order modal frequency of the supporting structure, and converges quickly in the supporting structure’s mass-optimization process. The supporting structure results demonstrate the advantages of the method proposed in the article in terms of high accuracy and efficiency. The study in this paper provides an effective method for the optimized design of optical machine structures.


Author(s):  
Lei Si ◽  
Zhongbin Wang ◽  
Xinhua Liu

In order to accurately and conveniently identify the shearer running status, a novel approach based on the integration of rough sets (RS) and improved wavelet neural network (WNN) was proposed. The decision table of RS was discretized through genetic algorithm and the attribution reduction was realized by MIBARK algorithm to simply the samples of WNN. Furthermore, an improved particle swarm optimization algorithm was proposed to optimize the parameters of WNN and the flowchart of proposed approach was designed. Then, a simulation example was provided and some comparisons with other methods were carried out. The simulation results indicated that the proposed approach was feasible and outperforming others. Finally, an industrial application example of mining automation production was demonstrated to verify the effect of proposed system.


2013 ◽  
Vol 427-429 ◽  
pp. 1048-1051
Author(s):  
Xu Sheng Gan ◽  
Hao Lin Cui ◽  
Ya Rong Wu

In order to diagnose the fault in analog circuit correctly, a Wavelet Neural Network (WNN) method is proposed that uses the Particle Swarm Optimization (PSO) algorithm to optimize the network parameters. For the improvement of convergence rate in WNN based on PSO algorithm, a compressing method in research space is introduced into the traditional PSO algorithm to improve the convergence in WNN training. The simulation shows that the proposed method has a good diagnosis with fast convergence rate for the fault in analog circuit.


2020 ◽  
Vol 305 ◽  
pp. 163-168
Author(s):  
Peng Gu ◽  
Chuan Min Zhu ◽  
Yin Yue Wu ◽  
Andrea Mura

As the typical particle-reinforced aluminum matrix composite, SiCp/Al composite has low density, high elastic modulus and high thermal conductivity, and is one of the most competitive metal matrix composites. Grinding is the main processing technique of SiCp/Al composite, energy consumption of the grinding process provides guidance for the energy saving, which is the aim of green manufacturing. In this paper, grinding experiments were designed and conducted to obtain the energy consumption of the grinding machine tool. The Particle Swarm Optimization (PSO) BP neural network prediction model was applied in the energy consumption prediction model of SiCp/Al composite in grinding. It showed that the Particle Swarm Optimization (PSO) BP neural network prediction model has high prediction accuracy. The prediction model of energy consumption based on PSO-BP neural network is helpful in energy saving, which contributes to greening manufacturing.


2014 ◽  
Vol 644-650 ◽  
pp. 2636-2640 ◽  
Author(s):  
Jian Hua Zhang ◽  
Fan Tao Kong ◽  
Jian Zhai Wu ◽  
Meng Shuai Zhu ◽  
Ke Xu ◽  
...  

Accurate prediction of agricultural prices is beneficial to correctly guide the circulation of agricultural products and agricultural production and realize the equilibrium of supply and demand of agricultural area. On the basis of wavelet neural network, this paper, choosing tomato prices as study object, tomato retail price data from ten collection sites in Hebei province from January, 1st, 2013 to December, 30th, 2013 as samples, builds the tomato price time series prediction model to test price model. As the results show, model prediction error rate is less than 0.01, and the correlation (R2) of predicted value and actual value is 0.908, showing that the model could accurately predict tomatoes price movements. The establishment of the model will provide technical support for tomato market monitoring and early warning and references for related policies.


Sign in / Sign up

Export Citation Format

Share Document