An on-demand scheme driven by the knowledge of geospatial distribution for large-scale high-resolution impervious surface mapping

2021 ◽  
pp. 1-25
Author(s):  
Min Huang ◽  
Nengcheng Chen ◽  
Wenying Du ◽  
Mengtian Wen ◽  
Daoye Zhu ◽  
...  
2018 ◽  
Vol 10 (9) ◽  
pp. 1349 ◽  
Author(s):  
Hui Luo ◽  
Le Wang ◽  
Chen Wu ◽  
Lei Zhang

Impervious surface mapping incorporating high-resolution remote sensing imagery has continued to attract increasing interest, as it can provide detailed information about urban structure and distribution. Previous studies have suggested that the combination of LiDAR data and high-resolution imagery for impervious surface mapping yields better performance than the use of high-resolution imagery alone. However, due to LiDAR data’s high cost of acquisition, it is difficult to obtain LiDAR data that was acquired at the same time as the high-resolution imagery in order to conduct impervious surface mapping by multi-sensor remote sensing data. Consequently, the occurrence of real landscape changes between multi-sensor remote sensing data sets with different acquisition times results in misclassification errors in impervious surface mapping. This issue has generally been neglected in previous works. Furthermore, observation differences that were generated from multi-sensor data—including the problems of misregistration, missing data in LiDAR data, and shadow in high-resolution images—also present obstacles to achieving the final mapping result in the fusion of LiDAR data and high-resolution images. In order to resolve these issues, we propose an improved impervious surface-mapping method incorporating both LiDAR data and high-resolution imagery with different acquisition times that consider real landscape changes and observation differences. In the proposed method, multi-sensor change detection by supervised multivariate alteration detection (MAD) is employed to identify the changed areas and mis-registered areas. The no-data areas in the LiDAR data and the shadow areas in the high-resolution image are extracted via independent classification based on the corresponding single-sensor data. Finally, an object-based post-classification fusion is proposed that takes advantage of both independent classification results while using single-sensor data and the joint classification result using stacked multi-sensor data. The impervious surface map is subsequently obtained by combining the landscape classes in the accurate classification map. Experiments covering the study site in Buffalo, NY, USA demonstrate that our method can accurately detect landscape changes and unambiguously improve the performance of impervious surface mapping.


Author(s):  
Hui Luo ◽  
Le Wang ◽  
Chen Wu ◽  
Lei Zhang

Impervious surface mapping with high-resolution remote sensing imagery has attracted increasing interest as it can provide detailed information for urban structure and distribution. Previous studies have suggested that the combination of LiDAR data and high-resolution imagery for impervious surface mapping performs better than using only high-resolution imagery. However, due to the high cost of the acquisition of LiDAR data, it is difficult to obtain the multi-sensor remote sensing data acquired at the same acquisition time for impervious surface mapping. Consequently, real landscape changes between multi-sensor remote sensing data at different acquisition times would lead to the error of misclassification in impervious surface mapping. This issue has mostly been neglected in previous works. Furthermore, the observation differences generated from multi-sensor data, including the problems of misregistration, missing data in LiDAR data, and shadow in high-resolution images would also challenge the final mapping result in the fusion of LiDAR data and high-resolution images. In order to conquer these problems, we propose an improved impervious surface mapping method incorporating both LiDAR data and high-resolution imagery at different acquisition times in consideration of real landscape changes and observation differences. In the proposed method, a multi-sensor change detection by supervised multivariate alteration detection is employed to obtain changed areas and misregistration areas. The no-data areas in the LiDAR data and the shadow areas in the high-resolution imagery are extracted by independent classification yielded by its corresponding single sensor data. Finally, an object-based post-classification fusion is proposed to take advantage of independent classification results with single-sensor data and the joint classification result with stacked multi-sensor data. Experiments covering the study site in Buffalo, NY, USA demonstrate that our method can accurately detect landscape changes and obviously improve the performance of impervious surface mapping.


Applied GIS ◽  
2005 ◽  
Vol 1 (1) ◽  
pp. 3.1-3.19 ◽  
Author(s):  
Joshphar Kunapo ◽  
Pua Tai Sim ◽  
Shobhit Chandra

2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Mariela Gabioux ◽  
Vladimir Santos da Costa ◽  
Joao Marcos Azevedo Correia de Souza ◽  
Bruna Faria de Oliveira ◽  
Afonso De Moraes Paiva

Results of the basic model configuration of the REMO project, a Brazilian approach towards operational oceanography, are discussed. This configuration consists basically of a high-resolution eddy-resolving, 1/12 degree model for the Metarea V, nested in a medium-resolution eddy-permitting, 1/4 degree model of the Atlantic Ocean. These simulations performed with HYCOM model, aim for: a) creating a basic set-up for implementation of assimilation techniques leading to ocean prediction; b) the development of hydrodynamics bases for environmental studies; c) providing boundary conditions for regional domains with increased resolution. The 1/4 degree simulation was able to simulate realistic equatorial and south Atlantic large scale circulation, both the wind-driven and the thermohaline components. The high resolution simulation was able to generate mesoscale and represent well the variability pattern within the Metarea V domain. The BC mean transport values were well represented in the southwestern region (between Vitória-Trinidade sea mount and 29S), in contrast to higher latitudes (higher than 30S) where it was slightly underestimated. Important issues for the simulation of the South Atlantic with high resolution are discussed, like the ideal place for boundaries, improvements in the bathymetric representation and the control of bias SST, by the introducing of a small surface relaxation. In order to make a preliminary assessment of the model behavior when submitted to data assimilation, the Cooper & Haines (1996) method was used to extrapolate SSH anomalies fields to deeper layers every 7 days, with encouraging results.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chris E. Blenkinsopp ◽  
Paul M. Bayle ◽  
Daniel C. Conley ◽  
Gerd Masselink ◽  
Emily Gulson ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s41597-021-00874-2.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 640
Author(s):  
Olivier Oldrini ◽  
Patrick Armand ◽  
Christophe Duchenne ◽  
Sylvie Perdriel ◽  
Maxime Nibart

Accidental or malicious releases in the atmosphere are more likely to occur in built-up areas, where flow and dispersion are complex. The EMERGENCIES project aims to demonstrate the operational feasibility of three-dimensional simulation as a support tool for emergency teams and first responders. The simulation domain covers a gigantic urban area around Paris, France, and uses high-resolution metric grids. It relies on the PMSS modeling system to model the flow and dispersion over this gigantic domain and on the Code_Saturne model to simulate both the close vicinity and the inside of several buildings of interest. The accelerated time is achieved through the parallel algorithms of the models. Calculations rely on a two-step approach: the flow is computed in advance using meteorological forecasts, and then on-demand release scenarios are performed. Results obtained with actual meteorological mesoscale data and realistic releases occurring both inside and outside of buildings are presented and discussed. They prove the feasibility of operational use by emergency teams in cases of atmospheric release of hazardous materials.


Sign in / Sign up

Export Citation Format

Share Document