Prediction of Iron Carbonate Scale Formation in Iranian Oilfields at Different Mixing Ratio of Injection Water with Formation Water

Author(s):  
M. Amiri ◽  
J. Moghadasi ◽  
M. Jamialahmadi
2012 ◽  
Author(s):  
Amer Badr Merdhah ◽  
Abu Azam Mohd Yassin

Kerak pemendapan merupakan satu daripada masalah paling penting dan serius dalam sistem suntikan air. Kerak kadangkala mengehadkan atau menghalang penghasilan gas dan minyak melalui penyumbatan matrik atau perpecahan pembentukan minyak dan jeda yang berlubang. Makalah ini mengetengahkan kesimpulan pengukuran makmal bagi kerak terbentuk di dalam keterlarutan medan minyak biasa dalam sintetik air masin (pembentukan air dan air laut) bagi pembentukan air yang mengandungi barium dan kandungan garam yang tinggi pada suhu 40 hingga 90°C pada tekanan atmosfera. Keputusan uji kaji mengesahkan pola kebergantungan keterlarutan bagi kerak medan minyak biasa pada keadaan ini. Pada suhu yang lebih tinggi, kerak bagi CaCO3, CaSO4, dan SrSO4 meningkat manakala kerak BaSO4 menurun disebabkan oleh keterlarutan CaCO3, CaSO4, dan SrSO4 menurun dan keterlarutan BaSO4 meningkat dengan kenaikan suhu. Kata kunci: Masalah pengskalaan; skala keterlarutan; paras kandungan garam tinggi; logam barium tinggi Scale deposition is one of the most important and serious problems which water injection systems are generally engaged in. Scale sometimes limits or blocks oil and gas production by plugging the oil–producing formation matrix or fractures and the perforated intervals. This paper presents a summary of the laboratory measurements of the solubility of common oil field scales in synthetic brines (formation water and sea water) of high–barium and high–salinity formation waters at 40 to 90°C and atmospheric pressure. The experimental results confirm the general trend in solubility dependencies for common oil field scales at these conditions. At higher temperatures the deposition of CaCO3, CaSO4 and SrSO4 scale increases and the deposition of BaSO4 scale decreases since the solubilities of CaCO3, CaSO4 and SrSO4 scales decreases and the solubility of BaSO4 increases with increasing temperature. Key words: Scaling problems; solubility of scale; high salinity; high barium


2021 ◽  
Author(s):  
Dalia Salem Abdallah ◽  
Mark Grutters ◽  
Robert Stalker ◽  
Rob Hutchison ◽  
Christopher Stewart ◽  
...  

Abstract ADNOC Onshore plans to use seawater as alternative to aquifer water, its source of injection water for over 40 years. However, using seawater for injection introduces a sulfate scaling risk due to incompatibility with formation water. Sulfate in the seawater and cations in the formation water (Ca, Sr) are likely to precipitate, causing scaling and related flow assurance problems and formation damage. Sulfate can be removed from the injection water by means of desulfation, but sulfate removal to well below its scaling concentration is CAPEX intensive and negatively impacts seawater flooding economics. In this paper, the economic benefits of partial sulfate reduction are evaluated, by finding a balance between controllable scaling and costs for inhibition and sulfate removal.


2021 ◽  
Author(s):  
Yukito Nomura ◽  
Mariam Sultan Almarzooqi ◽  
Ken Makishima ◽  
Jon Tuck

Abstract An offshore field is producing oil from multiple reservoirs with peripheral water injection scheme. Seawater is injected through a subsea network and wellhead towers located along the original reservoir edge. However, because its OWC has moved upward, wells from wellhead towers are too remote to inject seawater effectively, with some portion going to the aquifer rather than oil pool. Therefore, it is planned to migrate injection strategy from peripheral to mid-dip pattern. An expected risk is scaling by mixing incompatible seawater and formation water. Such risk and mitigation measures were evaluated. To achieve the objective, the following methodology was applied: 1. Scale modelling based on water chemical analysis. 2. Define scale risk envelope with three risk categories 3. Tracer dynamic reservoir simulation to track formation water, connate water, dump flood water, injection seawater and treated seawater. 4. Review the past field scale history data 5. Coreflood experiment to observe actual phenomena inside the reservoir with various parameters such as water mixing ratio, sulphate concentration, temperature and chemical inhibitor 6. Consolidate all study results, conclude field scale risk and impact of mitigation measures. Scale prediction modelling, verified by coreflood tests, found that mixing reservoir formation water and injection seawater causes a sulphate scale risk, with risk severity depending on mixing ratio and sulphate concentration. Reservoir temperature was also found to correlate strongly with scale risk. Therefore, each reservoir should have different water management strategy. Scale impact is limited in the shallower wide reservoir with cooler reservoir temperature. Such reservoir should therefore have mid-dip pattern water injection to avoid low water injection efficiency with possible scale inhibitor squeezing as a contingency option. On the other hand, deeper reservoir has higher risk of scaling due to its higher temperature, causing scale plugging easily in reservoir pores and production wells. For such reservoir, peripheral aquifer water injection, treated low-sulphate seawater with sulphate-removal system, or no water injection development concept should be selected. By using modelling and experiment to quantify the scale risk over a range of conditions, the field operator has identified opportunities to optimize the water injection strategy. The temperature dependence of the scale risk means, in principal, that different injection strategy for each reservoir can minimize flow assurance challenges and maximize return on investment in scale mitigation measures.


Sign in / Sign up

Export Citation Format

Share Document