Conventional and advanced exergy, exergoeconomic and exergoenvironmental analysis of a biomass integrated gasification combined cycle plant

Author(s):  
Mohammad Hasan Khoshgoftar Manesh ◽  
Esmaeil Jadidi
2012 ◽  
Vol 134 (2) ◽  
Author(s):  
T. Srinivas ◽  
B. V. Reddy ◽  
A. V. S. S. K. S. Gupta

The performance characteristics of a rice husk based integrated gasification combined cycle (IGCC) plant has been developed at the variable operating conditions of gasifier. A thermo-chemical model developed by the authors has been applied for wet fuel (fuel with moisture) for predicting the gas composition, gas generation per kg of fuel, plant efficiency and power generation capacity, and NOx and CO2 emissions. The effect of the relative air fuel ratio (RAFR), steam fuel ratio (SFR), and gasifier pressure has been examined on the plant electrical efficiency, power output, and NOx and CO2 emissions of the plant with and without supplementary firing (SF) between gas turbine (GT) outlet and heat recovery steam generator (HRSG). The optimum working conditions for efficient running of the IGCC plant are 0.25 RAFR, 0.5 SFR, and 11 bar gasifier pressure at the GT inlet temperature of 1200 °C. The optimum operational conditions of the gasifier for maximum efficiency condition are different compared to maximum power condition. The current IGCC plant results 264.5 MW of electric power with the compressor air flow rate of 375 kg/s at the existed conventional combined cycle plant conditions (Srinivas et al., 2011, “Parametric Simulation of Combined Cycle Power Plant: A Case Study,” Int. J. Thermodyn. 14(1), pp. 29–36). The optimum compressor pressure ratio increases with increase in GT inlet temperature and decreases with addition of SF.


1979 ◽  
Author(s):  
D. J. Ahner ◽  
A. S. Patel ◽  
G. Quentin

This paper discusses the model features and preliminary results of an analytical simulation control study of an integrated gasification combined cycle plant, incorporating air blown, fixed bed gasifiers. This effort is being conducted under an EPRI contract. The general scope of the study effort and the model capabilities are discussed. In addition, dynamic simulations utilizing various fuel system subloop and station control logic are presented and their implications with respect to power system response and fuel system excursions are described.


2020 ◽  
pp. 99-111
Author(s):  
Vontas Alfenny Nahan ◽  
Audrius Bagdanavicius ◽  
Andrew McMullan

In this study a new multi-generation system which generates power (electricity), thermal energy (heating and cooling) and ash for agricultural needs has been developed and analysed. The system consists of a Biomass Integrated Gasification Combined Cycle (BIGCC) and an absorption chiller system. The system generates about 3.4 MW electricity, 4.9 MW of heat, 88 kW of cooling and 90 kg/h of ash. The multi-generation system has been modelled using Cycle Tempo and EES. Energy, exergy and exergoeconomic analysis of this system had been conducted and exergy costs have been calculated. The exergoeconomic study shows that gasifier, combustor, and Heat Recovery Steam Generator are the main components where the total cost rates are the highest. Exergoeconomic variables such as relative cost difference (r) and exergoeconomic factor (f) have also been calculated. Exergoeconomic factor of evaporator, combustor and condenser are 1.3%, 0.7% and 0.9%, respectively, which is considered very low, indicates that the capital cost rates are much lower than the exergy destruction cost rates. It implies that the improvement of these components could be achieved by increasing the capital investment. The exergy cost of electricity produced in the gas turbine and steam turbine is 0.1050 £/kWh and 0.1627 £/kWh, respectively. The cost of ash is 0.0031 £/kg. In some Asian countries, such as Indonesia, ash could be used as fertilizer for agriculture. Heat exergy cost is 0.0619 £/kWh for gasifier and 0.3972 £/kWh for condenser in the BIGCC system. In the AC system, the exergy cost of the heat in the condenser and absorber is about 0.2956 £/kWh and 0.5636 £/kWh, respectively. The exergy cost of cooling in the AC system is 0.4706 £/kWh. This study shows that exergoeconomic analysis is powerful tool for assessing the costs of products.


Sign in / Sign up

Export Citation Format

Share Document