Investigation of the flow and heat transfer performance for a water-cooling grate in a biomass boiler

Author(s):  
Shiqiao Yang ◽  
Hrvoje Mikulčić
Author(s):  
X. Yu ◽  
C. Woodcock ◽  
Y. Wang ◽  
J. Plawsky ◽  
Y. Peles

In this paper we reported an advanced structure, the Piranha Pin Fin (PPF), for microchannel flow boiling. Fluid flow and heat transfer performance were evaluated in detail with HFE7000 as working fluid. Surface temperature, pressure drop, heat transfer coefficient and critical heat flux (CHF) were experimentally obtained and discussed. Furthermore, microchannels with different PPF geometrical configurations were investigated. At the same time, tests for different flow conditions were conducted and analyzed. It turned out that microchannel with PPF can realize high-heat flux dissipation with reasonable pressure drop. Both flow conditions and PPF configuration played important roles for both fluid flow and heat transfer performance. This study provided useful reference for further PPF design in microchannel for flow boiling.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Ningbo Zhao ◽  
Xueyou Wen ◽  
Shuying Li

Coolant is one of the important factors affecting the overall performance of the intercooler for the intercooled (IC) cycle marine gas turbine. Conventional coolants, such as water and ethylene glycol, have lower thermal conductivity which can hinder the development of highly effective compact intercooler. Nanofluids that consist of nanoparticles and base fluids have superior properties like extensively higher thermal conductivity and heat transfer performance compared to those of base fluids. This paper focuses on the application of two different water-based nanofluids containing aluminum oxide (Al2O3) and copper (Cu) nanoparticles in IC cycle marine gas turbine intercooler. The effectiveness-number of transfer unit method is used to evaluate the flow and heat transfer performance of intercooler, and the thermophysical properties of nanofluids are obtained from literature. Then, the effects of some important parameters, such as nanoparticle volume concentration, coolant Reynolds number, coolant inlet temperature, and gas side operating parameters on the flow and heat transfer performance of intercooler, are discussed in detail. The results demonstrate that nanofluids have excellent heat transfer performance and need lower pumping power in comparison with base fluids under different gas turbine operating conditions. Under the same heat transfer, Cu–water nanofluids can reduce more pumping power than Al2O3–water nanofluids. It is also concluded that the overall performance of intercooler can be enhanced when increasing the nanoparticle volume concentration and coolant Reynolds number and decreasing the coolant inlet temperature.


Author(s):  
F. Sun ◽  
H. Li ◽  
J. Drummond ◽  
G.-X. Wang

Bayonet tubes, simple refluent heat exchangers, are widely used to heat or cool a media when the heating/cooling agent is readily accessible from one side only. Many studies have been conducted to evaluate the heat transfer performance of bayonet tubes. The majority of these studies focus on the heat transfer in the annular section and little on the end surface. This paper presents a numerical simulation of the laminar flow and heat transfer in a bayonet tube. The simulation is first validated by the experimental data in the literature. The flow and heat transfer in bayonet tubes are then investigated with both flat and curved end surfaces. Both local and average Nusselt number on the end surfaces are calculated under various Re and geometry conditions. Effect of the end surface curvature is studied by comparing the performances of the flat and curved ended bayonet tubes.


Author(s):  
Huanling Liu ◽  
Bin Zhang

Abstract In this paper, we propose a new type of DL-MCHS to improve the substrate temperature uniformity of the microchannel heat sink, and conduct the optimization of the New DL-MCHS. The heat transfer and friction characteristics of the novel DL-MCHS are studied by numerical simulation. We compare the heat transfer performance the new DL-MCHS with the traditional TDL-MCHS (the DL-MCHS with truncated top channels λ = 0.38). The results prove the effectiveness of the improved design by FLUENT simulation. When the inlet velocity is kept constant and coolant is water, the heat transfer performance of the New DL-MCHS is higher than that of TDL-MCHS leading to an increase of the temperature uniformity. In order to achieving the best overall heat transfer performance, an optimization of New DL-MCHS is performed by GA (genetic algorithm).


2019 ◽  
Vol 139 (4) ◽  
pp. 2739-2768 ◽  
Author(s):  
A. Y. Adam ◽  
A. N. Oumer ◽  
G. Najafi ◽  
M. Ishak ◽  
M. Firdaus ◽  
...  

2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Yu Rao ◽  
Yamin Xu ◽  
Chaoyi Wan

A numerical study was conducted to investigate the effects of dimple depth on the flow and heat transfer characteristics in a pin fin-dimple channel, where dimples are located spanwisely between the pin fins. The study aimed at promoting the understanding of the underlying convective heat transfer mechanisms in the pin fin-dimple channels and improving the cooling design for the gas turbine components. The flow structure, friction factor, and heat transfer performance of the pin fin-dimple channels with various dimple depths have been obtained and compared with each other for the Reynolds number range of 8200–80,800. The study showed that, compared to the pin fin channel, the pin fin-dimple channels have further improved convective heat transfer performance, and the pin fin-dimple channel with deeper dimples shows relatively higher Nusselt number values. The study still showed a dimple depth-dependent flow friction performance for the pin fin-dimple channels compared to the pin fin channel, and the pin fin-dimple channel with shallower dimples shows relatively lower friction factors over the studied Reynolds number range. Furthermore, the computations showed the detailed characteristics in the distribution of the velocity and turbulence level in the flow, which revealed the underlying mechanisms for the heat transfer enhancement and flow friction reduction phenomenon in the pin fin-dimple channels.


Sign in / Sign up

Export Citation Format

Share Document