An Evaluation of the Application of Nanofluids in Intercooled Cycle Marine Gas Turbine Intercooler

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Ningbo Zhao ◽  
Xueyou Wen ◽  
Shuying Li

Coolant is one of the important factors affecting the overall performance of the intercooler for the intercooled (IC) cycle marine gas turbine. Conventional coolants, such as water and ethylene glycol, have lower thermal conductivity which can hinder the development of highly effective compact intercooler. Nanofluids that consist of nanoparticles and base fluids have superior properties like extensively higher thermal conductivity and heat transfer performance compared to those of base fluids. This paper focuses on the application of two different water-based nanofluids containing aluminum oxide (Al2O3) and copper (Cu) nanoparticles in IC cycle marine gas turbine intercooler. The effectiveness-number of transfer unit method is used to evaluate the flow and heat transfer performance of intercooler, and the thermophysical properties of nanofluids are obtained from literature. Then, the effects of some important parameters, such as nanoparticle volume concentration, coolant Reynolds number, coolant inlet temperature, and gas side operating parameters on the flow and heat transfer performance of intercooler, are discussed in detail. The results demonstrate that nanofluids have excellent heat transfer performance and need lower pumping power in comparison with base fluids under different gas turbine operating conditions. Under the same heat transfer, Cu–water nanofluids can reduce more pumping power than Al2O3–water nanofluids. It is also concluded that the overall performance of intercooler can be enhanced when increasing the nanoparticle volume concentration and coolant Reynolds number and decreasing the coolant inlet temperature.

Author(s):  
Ningbo Zhao ◽  
Xueyou Wen ◽  
Shuying Li

Coolant is one of the important factors affecting the overall performance of the intercooler for the intercooled cycle marine gas turbine. Conventional coolants such as water and ethylene glycol have lower thermal conductivity which can hinder the development of highly effective compact intercooler. Nanofluids that consist of nanoparticles and base fluids have superior properties like extensively higher thermal conductivity and heat transfer performance compared to those of base fluids. This paper focuses on the application of two different water-based nanofluids containing aluminum oxide (Al2O3) and copper (Cu) nanoparticles in intercooled cycle marine gas turbine intercooler. The effectiveness-number of transfer unit method is used to evaluate the flow and heat transfer performance of intercooler and the thermophysical properties of nanofluids are obtained from literature. Then the effects of some important parameters such as nanoparticle volume concentration, coolant Reynolds number, coolant inlet temperature and gas side operating parameters on the flow and heat transfer performance of intercooler are discussed in detail. The results demonstrate that nanofluids have excellent heat transfer performance and need lower pumping power in comparison with base fluids under different gas turbine operating conditions. Under the same heat transfer, Cu-water nanofluids can reduce more pumping power than Al2O3-water nanofluids. It is also concluded that the overall performance of intercooler can be enhanced when increasing the nanoparticle volume concentration and coolant Reynolds number and decreasing the coolant inlet temperature.


Author(s):  
Yigang Luan ◽  
Lianfeng Yang ◽  
Yue Yin ◽  
Pietro Zunino

Abstract Nowadays, gas turbine engines play an indispensable role in modern industry, which have been widely used especially in the aviation, marine and energy fields. The turbine inlet temperature is one of the most important factors that influences the performance of the turbine engine. It’s acknowledged that the higher turbine inlet temperature contributes to the overall gas turbine engine efficiency. Therefore, the internal cooling technology of turbine blades is of vital importance. This paper mainly studies the effects of dimples and protrusions on flow and heat transfer in matrix cooling channels and optimize the performance of the matrix cooling structure by numerical simulation and experiment methods. Thirteen cases have been calculated under Re = 10,000∼80,000 by the commercial code ANSYS Fluent. Structures with different layouts of dimples and protrusions were considered, such as the number, distance and the depth ratio. The original model has been strengthened due to the dimple and protrusion structure, which improves heat transfer performance as well as the thermal performance factor (TPF) on condition that the pressure loss increases slightly. Meanwhile, the optimized structures have been made and tested by the transient liquid crystal technique (TLC). A comparison between the CFD results and the experimental data is made. Note that the heat transfer performance is much better when the ratio of the dimple depth and the dimple diameter is equal to 0.3, compared with the ratio of 0.1 and 0.2. In terms of the cases with two sides dimples, the heat transfer can be enhanced by increasing the number of the dimples. In addition, the heat transfer performance is the best when both of dimples and protrusions are applied. Nu/Nu0 and TPF increase by up to approximately 7% and 5% respectively.


Author(s):  
Yubai Xiao ◽  
Hu Zhang ◽  
Junmei Wu

Abstract In recent years, hybrid nanofluids, as a new kind of working fluid, have been widely studied because they possessing better heat transfer performance than single component nanofluids when prepared with proper constituents and proportions. The application of hybrid nanofluids in nuclear power system as a working fluid is an effective way of improving the capability of In-Vessel Retention (IVR) when the reactor is in a severe accident. In order to obtain hybrid nanofluids with excellent heat transfer performance, three kinds of hybrid nanofluids with high thermal conductivity are measured by transient plane source method, and their viscosity and stability are also investigated experimentally. These experimental results are used to evaluate the heat transfer efficiency of hybrid nanofluids. The results show that: (1) The thermal conductivity of hybrid nanofluids increases with increasing temperature and volume concentration. When compared to the base fluid, the thermal conductivity of Al2O3-CuO/H2O, Al2O3-C/H2O and AlN-TiO2/H2O nanofluids at 0.25% volume concentration increased by 36%, 24%, and 22%, respectively. (2) Surfactants can improve the stability of hybrid nanofluids. The Zeta potential value is related to the thermal conductivity of the hybrid nanofluids, and it could be used to explain the relationship between the thermal conductivity of the hybrid nanofluids and the dispersion. It also could provide a reference for subsequent screening of high thermal conductivity nanofluids. (3) The addition of C/H2O can effectively reduce the dynamic viscosity coefficient of hybrid nanofluids. (4) The analysis of heat transfer efficiency of the hybrid nanofluids found that both Al2O3-CuO/H2O and Al2O3-C/H2O have better heat transfer ability than water under certain mixing conditions. This study is conducive to further optimizing hybrid nanofluids and its application to the In-Vessel Retention in severe reactor accidents.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhongyang Shen ◽  
Yonghui Xie ◽  
Di Zhang ◽  
Gongnan Xie

U-shaped channel, which is also called two-pass channel, commonly exists in gas turbine internal coolant passages. Ribbed walls are frequently adopted in internal passage to enhance the heat transfer. Considering the rotational condition of gas turbine blade on operation, the effect of rotation is also investigated for the coolant channel which is close to real operation condition. Thus, the objective of this study is to discuss the effect of rotation on fluid flow and heat transfer performance of U-shaped channel with ribbed walls under high rotational numbers. Investigated Reynolds number is Re=12500and the rotation numbers areRob=0.4and 0.6. In the results, the spatially heat transfer coefficient distributions are exhibited to discuss the effect of rotation and roughened walls. It is found that ribbed walls enhance the heat transfer rate significantly. Under the rotational condition, theNuin the first pass with outward flow is increased while that in the second pass is decreased. Finally, averageNuratio, friction ratio, and thermal performance are all presented to discuss the thermal characteristics.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Naveen Janjanam ◽  
Rajesh Nimmagadda ◽  
Lazarus Godson Asirvatham ◽  
R. Harish ◽  
Somchai Wongwises

AbstractTwo-dimensional conjugate heat transfer performance of stepped lid-driven cavity was numerically investigated in the present study under forced and mixed convection in laminar regime. Pure water and Aluminium oxide (Al2O3)/water nanofluid with three different nanoparticle volume concentrations were considered. All the numerical simulations were performed in ANSYS FLUENT using homogeneous heat transfer model for Reynolds number, Re = 100 to 500 and Grashof number, Gr = 5000, 13,000 and 20,000. Effective thermal conductivity of the Al2O3/water nanofluid was evaluated by considering the Brownian motion of nanoparticles which results in 20.56% higher value for 3 vol.% Al2O3/water nanofluid in comparison with the lowest thermal conductivity value obtained in the present study. A solid region made up of silicon is present underneath the fluid region of the cavity in three geometrical configurations (forward step, backward step and no step) which results in conjugate heat transfer. For higher Re values (Re = 500), no much difference in the average Nusselt number (Nuavg) is observed between forced and mixed convection. Whereas, for Re = 100 and Gr = 20,000, Nuavg value of mixed convection is 24% higher than that of forced convection. Out of all the three configurations, at Re = 100, forward step with mixed convection results in higher heat transfer performance as the obtained interface temperature is lower than all other cases. Moreover, at Re = 500, 3 vol.% Al2O3/water nanofluid enhances the heat transfer performance by 23.63% in comparison with pure water for mixed convection with Gr = 20,000 in forward step.


2013 ◽  
Vol 832 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Alam Khairul ◽  
Rahman Saidur ◽  
Altab Hossain ◽  
Mohammad Abdul Alim ◽  
Islam Mohammed Mahbubul

Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide excellent thermal performance of this type of heat exchangers. In the present study, the effect of different nanofluids on the heat transfer performance in a helically coiled heat exchanger is examined. Four different types of nanofluids CuO/water, Al2O3/water, SiO2/water, and ZnO/water with volume fractions 1 vol.% to 4 vol.% was used throughout this analysis and volume flow rate was remained constant at 3 LPM. Results show that the heat transfer coefficient is high for higher particle volume concentration of CuO/water, Al2O3/water and ZnO/water nanofluids, while the values of the friction factor and pressure drop significantly increase with the increase of nanoparticle volume concentration. On the contrary, low heat transfer coefficient was found in higher concentration of SiO2/water nanofluids. The highest enhancement of heat transfer coefficient and lowest friction factor occurred for CuO/water nanofluids among the four nanofluids. However, highest friction factor and lowest heat transfer coefficient were found for SiO2/water nanofluids. The results reveal that, CuO/water nanofluids indicate significant heat transfer performance for helically coiled heat exchanger systems though this nanofluids exhibits higher pressure drop.


Author(s):  
X. Yu ◽  
C. Woodcock ◽  
Y. Wang ◽  
J. Plawsky ◽  
Y. Peles

In this paper we reported an advanced structure, the Piranha Pin Fin (PPF), for microchannel flow boiling. Fluid flow and heat transfer performance were evaluated in detail with HFE7000 as working fluid. Surface temperature, pressure drop, heat transfer coefficient and critical heat flux (CHF) were experimentally obtained and discussed. Furthermore, microchannels with different PPF geometrical configurations were investigated. At the same time, tests for different flow conditions were conducted and analyzed. It turned out that microchannel with PPF can realize high-heat flux dissipation with reasonable pressure drop. Both flow conditions and PPF configuration played important roles for both fluid flow and heat transfer performance. This study provided useful reference for further PPF design in microchannel for flow boiling.


Sign in / Sign up

Export Citation Format

Share Document