Thermodynamic and environmental considerations of small turbojet engine under different design variables

Author(s):  
Hakan Aygun
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hakan Aygün

Purpose Usage of gas turbine engines has increased by day due to rising demand for military and civil applications. This case results in investigating diverse topics related to energy efficiency and irreversibility of these systems. The purpose of this paper is to perform a detailed entropy assessment of turbojet engines for different flight conditions. Design/methodology/approach In this study, for small turbojet engines used in unmanned aerial vehicles, parametric cycle analysis is carried out at (sea level-zero Mach (hereinafter phase-I)) and (altitude of 9,000 m- Mach of 0.7 (hereinafter phase-II)). Based on this analysis, variation of performance and thermodynamic parameters with respect to change in isentropic efficiency of the compressor (CIE) and turbine (TIE) is examined at both phases. In this context, the examined ranges for CIE is between 0.78 and 0.88 whereas TIE is between 0.85 and 0.95. Findings Increasing isentropic efficiency decreases entropy production of the small turbojet engine. Moreover, the highest entropy production occurs in the combustor in the comparison of other components. Namely, it decreases from 2.81 to 2.69 kW/K at phase-I and decreases from 1.44 to 1.39 kW/K at phase-II owing to rising CIE. Practical implications It is thought that this study helps in understanding the relationship between entropy production and the efficiency of components. Namely, the approach used in the current analysis could help decision-makers or designers to determine the optimum value of design variables. Originality/value Due to rising isentropic efficiencies of both components, it is observed that specific fuel consumption (SFC) decreases whereas specific thrust (ST) increases. Also, the isentropic efficiency of a compressor affects relatively SFC and ST higher than that of the turbine.


1967 ◽  
Author(s):  
GEORGE R. WHEATON ◽  
ALBERT ZAVALA ◽  
HAROLD P. VAN COTT

2013 ◽  
Vol 41 (1) ◽  
pp. 60-79 ◽  
Author(s):  
Wei Yintao ◽  
Luo Yiwen ◽  
Miao Yiming ◽  
Chai Delong ◽  
Feng Xijin

ABSTRACT: This article focuses on steel cord deformation and force investigation within heavy-duty radial tires. Typical bending deformation and tension force distributions of steel reinforcement within a truck bus radial (TBR) tire have been obtained, and they provide useful input for the local scale modeling of the steel cord. The three-dimensional carpet plots of the cord force distribution within a TBR tire are presented. The carcass-bending curvature is derived from the deformation of the carcass center line. A high-efficiency modeling approach for layered multistrand cord structures has been developed that uses cord design variables such as lay angle, lay length, and radius of the strand center line as input. Several types of steel cord have been modeled using the developed method as an example. The pure tension for two cords and the combined tension bending under various loading conditions relevant to tire deformation have been simulated by a finite element analysis (FEA). Good agreement has been found between experimental and FEA-determined tension force-displacement curves, and the characteristic structural and plastic deformation phases have been revealed by the FE simulation. Furthermore, some interesting local stress and deformation patterns under combined tension and bending are found that have not been previously reported. In addition, an experimental cord force measurement approach is included in this article.


2006 ◽  
Vol 34 (3) ◽  
pp. 170-194 ◽  
Author(s):  
M. Koishi ◽  
Z. Shida

Abstract Since tires carry out many functions and many of them have tradeoffs, it is important to find the combination of design variables that satisfy well-balanced performance in conceptual design stage. To find a good design of tires is to solve the multi-objective design problems, i.e., inverse problems. However, due to the lack of suitable solution techniques, such problems are converted into a single-objective optimization problem before being solved. Therefore, it is difficult to find the Pareto solutions of multi-objective design problems of tires. Recently, multi-objective evolutionary algorithms have become popular in many fields to find the Pareto solutions. In this paper, we propose a design procedure to solve multi-objective design problems as the comprehensive solver of inverse problems. At first, a multi-objective genetic algorithm (MOGA) is employed to find the Pareto solutions of tire performance, which are in multi-dimensional space of objective functions. Response surface method is also used to evaluate objective functions in the optimization process and can reduce CPU time dramatically. In addition, a self-organizing map (SOM) proposed by Kohonen is used to map Pareto solutions from high-dimensional objective space onto two-dimensional space. Using SOM, design engineers see easily the Pareto solutions of tire performance and can find suitable design plans. The SOM can be considered as an inverse function that defines the relation between Pareto solutions and design variables. To demonstrate the procedure, tire tread design is conducted. The objective of design is to improve uneven wear and wear life for both the front tire and the rear tire of a passenger car. Wear performance is evaluated by finite element analysis (FEA). Response surface is obtained by the design of experiments and FEA. Using both MOGA and SOM, we obtain a map of Pareto solutions. We can find suitable design plans that satisfy well-balanced performance on the map called “multi-performance map.” It helps tire design engineers to make their decision in conceptual design stage.


10.29007/2k64 ◽  
2018 ◽  
Author(s):  
Pat Prodanovic ◽  
Cedric Goeury ◽  
Fabrice Zaoui ◽  
Riadh Ata ◽  
Jacques Fontaine ◽  
...  

This paper presents a practical methodology developed for shape optimization studies of hydraulic structures using environmental numerical modelling codes. The methodology starts by defining the optimization problem and identifying relevant problem constraints. Design variables in shape optimization studies are configuration of structures (such as length or spacing of groins, orientation and layout of breakwaters, etc.) whose optimal orientation is not known a priori. The optimization problem is solved numerically by coupling an optimization algorithm to a numerical model. The coupled system is able to define, test and evaluate a multitude of new shapes, which are internally generated and then simulated using a numerical model. The developed methodology is tested using an example of an optimum design of a fish passage, where the design variables are the length and the position of slots. In this paper an objective function is defined where a target is specified and the numerical optimizer is asked to retrieve the target solution. Such a definition of the objective function is used to validate the developed tool chain. This work uses the numerical model TELEMAC- 2Dfrom the TELEMAC-MASCARET suite of numerical solvers for the solution of shallow water equations, coupled with various numerical optimization algorithms available in the literature.


Author(s):  
M. A. Danilov ◽  
◽  
M. V. Drobysh ◽  
A. N. Dubovitsky ◽  
F. G. Markov ◽  
...  

Restrictions of emissions for civil aircraft engines, on the one hand, and the need in increasing the engine efficiency, on the other hand, cause difficulties during development of low-emission combustors for such engines.


Sign in / Sign up

Export Citation Format

Share Document