scholarly journals Group 4 late embryogenesis abundant proteins as a model to study intrinsically disordered proteins in plants

2017 ◽  
Vol 12 (7) ◽  
pp. e1343777 ◽  
Author(s):  
Cesar L. Cuevas-Velazquez ◽  
Jose Luis Reyes ◽  
Alejandra A. Covarrubias
2021 ◽  
Vol 33 (2) ◽  
pp. 82
Author(s):  
P. Loi ◽  
D. A. Anzalone ◽  
L. Palazzese ◽  
A. Dinnyés ◽  
J. Saragusty ◽  
...  

This review provides a snapshot of the current state-of-the-art of drying cells and spermatozoa. The major successes and pitfalls of the most relevant literature are described separately for spermatozoa and cells. Overall, the data published so far indicate that we are closer to success in spermatozoa, whereas the situation is far more complex with cells. Critical for success is the presence of xeroprotectants inside the spermatozoa and, even more so, inside cells to protect subcellular compartments, primarily DNA. We highlight workable strategies to endow gametes and cells with the right combination of xeroprotectants, mostly sugars, and late embryogenesis abundant (LEA) or similar ‘intrinsically disordered’ proteins to help them withstand reversible desiccation. We focus on the biological aspects of water stress, and in particular cellular and DNA damage, but also touch on other still unexplored issues, such as the choice of both dehydration and rehydration methods or approaches, because, in our view, they play a primary role in reducing desiccation damage. We conclude by highlighting the need to exhaustively explore desiccation strategies other than lyophilisation, such as air drying, spin drying or spray drying, ideally with new prototypes, other than the food and pharmaceutical drying strategies currently used, tailored for the unique needs of cells and spermatozoa.


2021 ◽  
Vol 22 (15) ◽  
pp. 8172
Author(s):  
Orarat Ginsawaeng ◽  
Michal Gorka ◽  
Alexander Erban ◽  
Carolin Heise ◽  
Franziska Brueckner ◽  
...  

During seed germination, desiccation tolerance is lost in the radicle with progressing radicle protrusion and seedling establishment. This process is accompanied by comprehensive changes in the metabolome and proteome. Germination of Arabidopsis seeds was investigated over 72 h with special focus on the heat-stable proteome including late embryogenesis abundant (LEA) proteins together with changes in primary metabolites. Six metabolites in dry seeds known to be important for seed longevity decreased during germination and seedling establishment, while all other metabolites increased simultaneously with activation of growth and development. Thermo-stable proteins were associated with a multitude of biological processes. In the heat-stable proteome, a relatively similar proportion of fully ordered and fully intrinsically disordered proteins (IDP) was discovered. Highly disordered proteins were found to be associated with functional categories development, protein, RNA and stress. As expected, the majority of LEA proteins decreased during germination and seedling establishment. However, four germination-specific dehydrins were identified, not present in dry seeds. A network analysis of proteins, metabolites and amino acids generated during the course of germination revealed a highly connected LEA protein network.


2010 ◽  
Vol 88 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Peter Tompa ◽  
Denes Kovacs

Intrinsically disordered proteins (IDPs) are widespread in eukaryotes and fulfill important functions associated with signaling and regulation. Recent evidence points to a special and thus largely disrespected functional capacity of IDPs—that they can assist the folding of other proteins and prevent their aggregation, i.e., that they can act as chaperones. In this paper, we survey current information available on this phenomenon, with particular focus on (i) the structure and function of IDPs in general, (ii) disordered chaperones in plants, (iii) disordered chaperones in other organisms spanning from insects to mammals, (iv) the possible mechanisms of action of disordered chaperones, and (v) the possibility of two-faced (Janus) chaperone activity of disordered chaperones, which can assist the folding of both RNA and protein substrates. The evidence is most conclusive in the case of plant stress proteins, such as late embryogenesis abundant (LEA) proteins or dehydrins. We will show that the cellular function of LEA proteins in mitigating the damage caused by stress is clear; nevertheless, experiments carried out in vivo must be extended and the molecular mechanism of the action of IDP chaperones also requires clarification. Using these details, we chart out how far the field has progressed only to emphasize the long road ahead before chaperone function can be firmly established as part of the physiological mechanistic arsenal of the emerging group of IDPs.


2021 ◽  
Vol 22 (23) ◽  
pp. 12619
Author(s):  
Zhenping Sun ◽  
Shiyuan Li ◽  
Wenyu Chen ◽  
Jieqiong Zhang ◽  
Lixiao Zhang ◽  
...  

Dehydrins, also known as Group II late embryogenesis abundant (LEA) proteins, are classic intrinsically disordered proteins, which have high hydrophilicity. A wide range of hostile environmental conditions including low temperature, drought, and high salinity stimulate dehydrin expression. Numerous studies have furnished evidence for the protective role played by dehydrins in plants exposed to abiotic stress. Furthermore, dehydrins play important roles in seed maturation and plant stress tolerance. Hence, dehydrins might also protect plasma membranes and proteins and stabilize DNA conformations. In the present review, we discuss the regulatory networks of dehydrin gene expression including the abscisic acid (ABA), mitogen-activated protein (MAP) kinase cascade, and Ca2+ signaling pathways. Crosstalk among these molecules and pathways may form a complex, diverse regulatory network, which may be implicated in regulating the same dehydrin.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 814
Author(s):  
Lynnette M. A. Dirk ◽  
Caser Ghaafar Abdel ◽  
Imran Ahmad ◽  
Izabel Costa Silva Neta ◽  
Cristiane Carvalho Pereira ◽  
...  

The intrinsically disordered proteins belonging to the LATE EMBRYOGENESIS ABUNDANT protein (LEAP) family have been ascribed a protective function over an array of intracellular components. We focus on how LEAPs may protect a stress-susceptible proteome. These examples include instances of LEAPs providing a shield molecule function, possibly by instigating liquid-liquid phase separations. Some LEAPs bind directly to their client proteins, exerting a holdase-type chaperonin function. Finally, instances of LEAP–client protein interactions have been documented, where the LEAP modulates (interferes with) the function of the client protein, acting as a surreptitious rheostat of cellular homeostasis. From the examples identified to date, it is apparent that client protein modulation also serves to mitigate stress. While some LEAPs can physically bind and protect client proteins, some apparently bind to assist the degradation of the client proteins with which they associate. Documented instances of LEAP–client protein binding, even in the absence of stress, brings to the fore the necessity of identifying how the LEAPs are degraded post-stress to render them innocuous, a first step in understanding how the cell regulates their abundance.


2010 ◽  
Vol 154 (1) ◽  
pp. 373-390 ◽  
Author(s):  
Yadira Olvera-Carrillo ◽  
Francisco Campos ◽  
José Luis Reyes ◽  
Alejandro Garciarrubio ◽  
Alejandra A. Covarrubias

2019 ◽  
Author(s):  
Ruchi Lohia ◽  
Reza Salari ◽  
Grace Brannigan

<div>The role of electrostatic interactions and mutations that change charge states in intrinsically disordered proteins (IDPs) is well-established, but many disease-associated mutations in IDPs are charge-neutral. The Val66Met single nucleotide polymorphism (SNP) encodes a hydrophobic-to-hydrophobic mutation at the midpoint of the prodomain of precursor brain-derived neurotrophic factor (BDNF), one of the earliest SNPs to be associated with neuropsychiatric disorders, for which the underlying molecular mechanism is unknown. Here we report on over 250 μs of fully-atomistic, explicit solvent, temperature replica exchange molecular dynamics simulations of the 91 residue BDNF prodomain, for both the V66 and M66 sequence.</div><div>The simulations were able to correctly reproduce the location of both local and non-local secondary changes due to the Val66Met mutation when compared with NMR spectroscopy. We find that the local structure change is mediated via entropic and sequence specific effects. We show that the highly disordered prodomain can be meaningfully divided into domains based on sequence alone. Monte Carlo simulations of a self-excluding heterogeneous polymer, with monomers representing each domain, suggest the sequence would be effectively segmented by the long, highly disordered polyampholyte near the sequence midpoint. This is qualitatively consistent with observed interdomain contacts within the BDNF prodomain, although contacts between the two segments are enriched relative to the self-excluding polymer. The Val66Met mutation increases interactions across the boundary between the two segments, due in part to a specific Met-Met interaction with a Methionine in the other segment. This effect propagates to cause the non-local change in secondary structure around the second methionine, previously observed in NMR. The effect is not mediated simply via changes in inter-domain contacts but is also dependent on secondary structure formation around residue 66, indicating a mechanism for secondary structure coupling in disordered proteins. </div>


Sign in / Sign up

Export Citation Format

Share Document