late embryogenesis abundant protein
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 27)

H-INDEX

23
(FIVE YEARS 4)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 245
Author(s):  
Aleksandra Zečić ◽  
Ineke Dhondt ◽  
Bart P. Braeckman

DAF-16-dependent activation of a dauer-associated genetic program in the C. elegans insulin/IGF-1 daf-2(e1370) mutant leads to accumulation of large amounts of glycogen with concomitant upregulation of glycogen synthase, GSY-1. Glycogen is a major storage sugar in C. elegans that can be used as a short-term energy source for survival, and possibly as a reservoir for synthesis of a chemical chaperone trehalose. Its role in mitigating anoxia, osmotic and oxidative stress has been demonstrated previously. Furthermore, daf-2 mutants show increased abundance of the group 3 late embryogenesis abundant protein LEA-1, which has been found to act in synergy with trehalose to exert its protective role against desiccation and heat stress in vitro, and to be essential for desiccation tolerance in C. elegans dauer larvae. Here we demonstrate that accumulated glycogen is not required for daf-2 longevity, but specifically protects against hyperosmotic stress, and serves as an important energy source during starvation. Similarly, lea-1 does not act to support daf-2 longevity. Instead, it contributes to increased resistance of daf-2 mutants to heat, osmotic, and UV stress. In summary, our experimental results suggest that longevity and stress resistance can be uncoupled in IIS longevity mutants.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sujuan Xu ◽  
Ze Wu ◽  
Huizhong Hou ◽  
Jingya Zhao ◽  
Fengjiao Zhang ◽  
...  

AbstractDistant hybridization is widely used to develop crop cultivars, whereas the hybridization process of embryo abortion often severely reduces the sought-after breeding effect. The LEAFY COTYLEDON1 (LEC1) gene has been extensively investigated as a central regulator of seed development, but it is far less studied in crop hybridization breeding. Here we investigated the function and regulation mechanism of CmLEC1 from Chrysanthemum morifolium during its seed development in chrysanthemum hybridization. CmLEC1 encodes a nucleic protein and is specifically expressed in embryos. CmLEC1’s overexpression significantly promoted the seed-setting rate of the cross, while the rate was significantly decreased in the amiR-CmLEC1 transgenic chrysanthemum. The RNA-Seq analysis of the developing hybrid embryos revealed that regulatory genes involved in seed development, namely, CmLEA (late embryogenesis abundant protein), CmOLE (oleosin), CmSSP (seed storage protein), and CmEM (embryonic protein), were upregulated in the OE (overexpressing) lines but downregulated in the amiR lines vs. wild-type lines. Future analysis demonstrated that CmLEC1 directly activated CmLEA expression and interacted with CmC3H, and this CmLEC1–CmC3H interaction could enhance the transactivation ability of CmLEC1 for the expression of CmLEA. Further, CmLEC1 was able to induce several other key genes related to embryo development. Taken together, our results show that CmLEC1 plays a positive role in the hybrid embryo development of chrysanthemum plants, which might involve activating CmLEA’s expression and interacting with CmC3H. This may be a new pathway in the LEC1 regulatory network to promote seed development, one perhaps leading to a novel strategy to not only overcome embryo abortion during crop breeding but also increase the seed yield.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249757
Author(s):  
Mengyue Ding ◽  
Lijian Wang ◽  
Weimin Zhan ◽  
Guanghua Sun ◽  
Xiaolin Jia ◽  
...  

Late embryogenesis abundant (LEA) proteins are members of a large and highly diverse family that play critical roles in protecting cells from abiotic stresses and maintaining plant growth and development. However, the identification and biological function of genes of Secale cereale LEA (ScLEA) have been rarely reported. In this study, we identified 112 ScLEA genes, which can be divided into eight groups and are evenly distributed on all rye chromosomes. Structure analysis revealed that members of the same group tend to be highly conserved. We identified 12 pairs of tandem duplication genes and 19 pairs of segmental duplication genes, which may be an expansion way of LEA gene family. Expression profiling analysis revealed obvious temporal and spatial specificity of ScLEA gene expression, with the highest expression levels observed in grains. According to the qRT-PCR analysis, selected ScLEA genes were regulated by various abiotic stresses, especially PEG treatment, decreased temperature, and blue light. Taken together, our results provide a reference for further functional analysis and potential utilization of the ScLEA genes in improving stress tolerance of crops.


2021 ◽  
Vol 182 ◽  
pp. 104310
Author(s):  
Marina E. Battaglia ◽  
Ana Valeria Martínez-Silva ◽  
Yadira Olvera-Carrillo ◽  
Tzvetanka D. Dinkova ◽  
Alejandra A. Covarrubias

2021 ◽  
Vol 11 ◽  
Author(s):  
Xing Huang ◽  
Yongsheng Liang ◽  
Baoqing Zhang ◽  
Xiupeng Song ◽  
Yangrui Li ◽  
...  

Cold stress causes major losses to sugarcane production, yet the precise molecular mechanisms that cause losses due to cold stress are not well-understood. To survey miRNAs and genes involved in cold tolerance, RNA-seq, miRNA-seq, and integration analyses were performed on Saccharum spontaneum. Results showed that a total of 118,015 genes and 6,034 of these differentially expressed genes (DEGs) were screened. Protein–protein interaction (PPI) analyses revealed that ABA signaling via protein phosphatase 2Cs was the most important signal transduction pathway and late embryogenesis abundant protein was the hub protein associated with adaptation to cold stress. Furthermore, a total of 856 miRNAs were identified in this study and 109 of them were differentially expressed in sugarcane responding to cold stress. Most importantly, the miRNA–gene regulatory networks suggested the complex post-transcriptional regulation in sugarcane under cold stress, including 10 miRNAs−42 genes, 16 miRNAs−70 genes, and three miRNAs−18 genes in CT vs. LT0.5, CT vs. LT1, and CT0.5 vs. LT1, respectively. Specifically, key regulators from 16 genes encoding laccase were targeted by novel-Chr4C_47059 and Novel-Chr4A_40498, while five LRR-RLK genes were targeted by Novel-Chr6B_65233 and Novel-Chr5D_60023, 19 PPR repeat proteins by Novel-Chr5C_57213 and Novel-Chr5D_58065. Our findings suggested that these miRNAs and cell wall-related genes played vital regulatory roles in the responses of sugarcane to cold stress. Overall, the results of this study provide insights into the transcriptional and post-transcriptional regulatory network underlying the responses of sugarcane to cold stress.


Cryobiology ◽  
2020 ◽  
Vol 97 ◽  
pp. 292-293
Author(s):  
Jason Solocinski ◽  
Quinn Osgood ◽  
Michael Menze ◽  
Steven Hand ◽  
Nilay Chakraborty

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yufei Xiao ◽  
Junji Li ◽  
Ye Zhang ◽  
Xiaoning Zhang ◽  
Hailong Liu ◽  
...  

Abstract Background Eucalyptus, a highly diverse genus of the Myrtaceae family, is the most widely planted hardwood in the world due to its increasing importance for fiber and energy. Somatic embryogenesis (SE) is one large-scale method to provide commercial use of the vegetative propagation of Eucalyptus and dedifferentiation is a key step for plant cells to become meristematic. However, little is known about the molecular changes during the Eucalyptus SE. Results We compared the transcriptome profiles of the differentiated and dedifferentiated tissues of two Eucalyptus species – E. camaldulensis (high embryogenetic potential) and E. grandis x urophylla (low embryogenetic potential). Initially, we identified 18,777 to 20,240 genes in all samples. Compared to the differentiated tissues, we identified 9229 and 8989 differentially expressed genes (DEGs) in the dedifferentiated tissues of E. camaldulensis and E. grandis x urophylla, respectively, and 2687 up-regulated and 2581 down-regulated genes shared. Next, we identified 2003 up-regulated and 1958 down-regulated genes only in E. camaldulensis, including 6 somatic embryogenesis receptor kinase, 17 ethylene, 12 auxin, 83 ribosomal protein, 28 zinc finger protein, 10 heat shock protein, 9 histone, 122 cell wall related and 98 transcription factor genes. Genes from other families like ABA, arabinogalactan protein and late embryogenesis abundant protein were also found to be specifically dysregulated in the dedifferentiation process of E. camaldulensis. Further, we identified 48,447 variants (SNPs and small indels) specific to E. camaldulensis, including 13,434 exonic variants from 4723 genes (e.g., annexin, GN, ARF and AP2-like ethylene-responsive transcription factor). qRT-PCR was used to confirm the gene expression patterns in both E. camaldulensis and E. grandis x urophylla. Conclusions This is the first time to study the somatic embryogenesis of Eucalyptus using transcriptome sequencing. It will improve our understanding of the molecular mechanisms of somatic embryogenesis and dedifferentiation in Eucalyptus. Our results provide a valuable resource for future studies in the field of Eucalyptus and will benefit the Eucalyptus breeding program.


2020 ◽  
Author(s):  
Yufei Xiao ◽  
Junji Li ◽  
Ye Zhang ◽  
Xiaoning Zhang ◽  
Hailong Liu ◽  
...  

Abstract Background: Eucalyptus, a highly diverse genus of the Myrtaceae family, is the most widely planted hardwood in the world due to its increasing importance for fiber and energy. Somatic embryogenesis (SE) is one large-scale method to provide commercial use of the vegetative propagation of Eucalyptus and dedifferentiation is a key step for plant cells to become meristematic. However, little is known about the molecular changes during the Eucalyptus SE.Results: We compared the transcriptome profiles of the differentiated and dedifferentiated tissues of two Eucalyptus species – E. camaldulensis (high embryogenetic potential) and E. grandis x urophylla (low embryogenetic potential). Initially, we identified 18,777 to 20,240 genes in all samples. Compared to the differentiated tissues, we identified 9,229 and 8,989 differentially expressed genes (DEGs) in the dedifferentiated tissues of E. camaldulensis and E. grandis x urophylla, respectively, and 2,687 up-regulated and 2,581 down-regulated genes shared. Next, we identified 2,003 up-regulated and 1,958 down-regulated genes only in E. camaldulensis, including 6 somatic embryogenesis receptor kinase, 17 ethylene, 12 auxin, 83 ribosomal protein, 28 zinc finger protein, 10 heat shock protein, 9 histone, 122 cell wall related and 98 transcription factor genes. Genes from other families like ABA, arabinogalactan protein and late embryogenesis abundant protein were also found to be specifically dysregulated in the dedifferentiation process of E. camaldulensis. Further, we identified 48,447 variants (SNPs and small indels) specific to E. camaldulensis, including 13,434 exonic variants from 4,723 genes (e.g., annexin, GN, ARF and AP2-like ethylene-responsive transcription factor). qRT-PCR was used to confirm the gene expression patterns in both E. camaldulensis and E. grandis x urophylla. Conclusions: This is the first time to study the somatic embryogenesis of Eucalyptus using transcriptome sequencing. It will improve our understanding of the molecular mechanisms of somatic embryogenesis and dedifferentiation in Eucalyptus. Our results provide a valuable resource for future studies in the field of Eucalyptus and will benefit the Eucalyptus breeding program.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mahesh Pujar ◽  
S. Gangaprasad ◽  
Mahalingam Govindaraj ◽  
Sunil S. Gangurde ◽  
A. Kanatti ◽  
...  

Abstract Pearl millet hybrids biofortified with iron (Fe) and zinc (Zn) promise to be part of a long-term strategy to combat micronutrient malnutrition in the arid and semi-arid tropical (SAT) regions of the world. Biofortification through molecular breeding is the way forward to achieving a rapid trait-based breeding strategy. This genome-wide association study (GWAS) was conducted to identify significant marker-trait associations (MTAs) for Fe, Zn, and protein content (PC) for enhanced biofortification breeding. A diverse panel of 281 advanced inbred lines was evaluated for Fe, Zn, and PC over two seasons. Phenotypic evaluation revealed high variability (Fe: 32–120 mg kg−1, Zn: 19–87 mg kg−1, PC: 8–16%), heritability (hbs2 ≥ 90%) and significantly positive correlation among Fe, Zn and PC (P = 0.01), implying concurrent improvement. Based on the Diversity Arrays Technology (DArT) seq assay, 58,719 highly informative SNPs were filtered for association mapping. Population structure analysis showed six major genetic groups (K = 6). A total of 78 MTAs were identified, of which 18 were associated with Fe, 43 with Zn, and 17 with PC. Four SNPs viz., Pgl04_64673688, Pgl05_135500493, Pgl05_144482656, and Pgl07_101483782 located on chromosomes Pgl04 (1), Pgl05 (2) and Pgl07 (1), respectively were co-segregated for Fe and Zn. Promising genes, ‘Late embryogenesis abundant protein’, ‘Myb domain’, ‘pentatricopeptide repeat’, and ‘iron ion binding’ coded by 8 SNPs were identified. The SNPs/genes identified in the present study presents prospects for genomics assisted biofortification breeding in pearl millet.


Sign in / Sign up

Export Citation Format

Share Document