Experimental investigation of the ultimate bearing capacity of deformed segmental tunnel linings strengthened by epoxy-bonded filament wound profiles

2016 ◽  
Vol 13 (10) ◽  
pp. 1268-1283 ◽  
Author(s):  
Xian Liu ◽  
Zijie Jiang ◽  
Lele Zhang
2014 ◽  
Vol 578-579 ◽  
pp. 155-159 ◽  
Author(s):  
Peng Cheng Zhu ◽  
Ming Kang Gou ◽  
Yin Zhi Zhou

The external post-tensioning technique has been commonly used in the construction field because it facilitates the analysis of structures and is widely applicable for many types of structures. In this research, 12 steel H-beams were built and tested in terms of the amount of tendon or prestressing force. The results show that the externally prestressing method can increase ultimate bearing capacity of the beams. The prestressing force is the significant factor that influence the strengthening of steel H-beams. However, the amount of deviators cannot significantly influence the bearing capacity.


2010 ◽  
Vol 163-167 ◽  
pp. 3600-3603
Author(s):  
Ying Li ◽  
Dong Zi Pan ◽  
Lian Zhang

Self-locked anchor is a new type of underreamed anchor, and which is more and more frequently used in both new construction and structural retrofitting or strengthening projects. Nevertheless, current design codes do not contain suitable design recommendations for these anchors. This study investigates the anchorage mechanisms of self-locked anchor under combined tension and shear loadings. The experimental parameters mainly include anchor diameters (Φ16 and Φ20) and loading angles (0°, 30°, 45°, and 60°). The present results indicate the characters of axial and transverse deformations, the ultimate bearing capacity, the fracture pattern of anchor, and the breakout model of concrete.


1998 ◽  
Vol 35 (5) ◽  
pp. 847-857 ◽  
Author(s):  
Adel Hanna ◽  
Mohamed Abdel-Rahman

Shells are usually used as structural elements in buildings. In Germany they showed remarkable resistance to the effects of bombing during World War II. About 1 decade later, the possibility of employing shells in foundation engineering was explored. Surveys of the literature indicate that shell foundations have been employed effectively in different parts of the world and were proven to provide an overall economical alternative to the conventional flat foundations. However, the geotechnical design of these footings remained the same as for their respective flat ones. Accordingly, the advantages of shell geometry in foundation engineering has not yet been explored in the design of these footings. The objective of the present study is to examine the overall geotechnical behavior of three types of shell foundations resting on sand under axial loading conditions, namely, triangular, conical, and pyramidal shells. Furthermore, the resulting bearing capacities and settlements will be compared with conventional strip, circular, and square flat foundations. The present paper presents an experimental study on nine foundation models tested on loose, medium, and dense sand states. The influence of shell configuration and embedment depth on the ultimate bearing capacity and settlement will be presented. The results of the present experimental investigation have shown the admirable performance of shell foundations with respect to ultimate bearing capacity and settlement characteristics. Shell foundations provide higher resistance to lateral loading as compared with flat ones, and thus they will perform better in earthquake regions.Key words: shell foundation, experimental investigation, bearing capacity, settlement, sand, geotechnical engineering.


Author(s):  
Lianheng Zhao ◽  
Shan Huang ◽  
Zhonglin Zeng ◽  
Rui Zhang ◽  
Gaopeng Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document