scholarly journals Low- and Mid-High Latitude Components of the East Asian Winter Monsoon and Their Reflecting Variations in Winter Climate over Eastern China

2012 ◽  
Vol 5 (3) ◽  
pp. 195-200 ◽  
Author(s):  
Liu Ge ◽  
Ji Li-Ren ◽  
Sun Shu-Qing ◽  
Xin Yu-Fei
2014 ◽  
Vol 27 (2) ◽  
pp. 835-851 ◽  
Author(s):  
Zhang Chen ◽  
Renguang Wu ◽  
Wen Chen

Abstract The East Asian winter monsoon (EAWM)-related climate anomalies have shown large year-to-year variations in both the intensity and the meridional extent. The present study distinguishes the interannual variations of the low-latitude and mid- to high-latitude components of the EAWM to gain a better understanding of the characteristics and factors for the EAWM variability. Through composite analysis based on two indices representing the northern and southern components (modes) of the EAWM variability, the present study clearly reveals features unique to the northern and southern mode. The northern mode is associated with changes in the mid- to high-latitude circulation systems, including the Siberian high, the Aleutian low, the East Asian trough, and the East Asian westerly jet stream, whereas the southern mode is closely related to circulation changes over the global tropics, the North Atlantic, and North America. A strong northern mode is accompanied by positive, negative, and positive surface temperature anomalies in the Indochina Peninsula, midlatitude Asia, and northeast Russia, respectively. A strong southern mode features lower temperature over tropics and higher temperature over mid- to high-latitude Asia. While the southern mode is closely related to El Niño–Southern Oscillation (ENSO), the northern mode does not show an obvious relation to the tropical sea surface temperature (SST) change or to the North Atlantic Oscillation (NAO)/Arctic Oscillation (AO) on the interannual time scale. Distinct snow cover and sea ice changes appear as responses to wind and surface temperature changes associated with the two modes and their effects on the EAWM variability need to be investigated in the future.


Geology ◽  
2020 ◽  
Vol 48 (11) ◽  
pp. 1043-1047 ◽  
Author(s):  
Shugang Kang ◽  
Jinhua Du ◽  
Ning Wang ◽  
Jibao Dong ◽  
Duo Wang ◽  
...  

Abstract Sub-orbital-scale variations of the East Asian winter monsoon (EAWM) and its mechanisms during the Holocene are controversial, partly due to the lack of high-quality records from Chinese loess. Here, we present high-resolution reconstruction of Holocene EAWM intensity based on optically stimulated luminescence dating and grain-size analysis from three loess sections taken from the Chinese Loess Plateau. The EAWM showed a persistent weakening trend during the early Holocene (ca. 11.7–6.5 kyr B.P.) and a strengthening trend during the mid- to late Holocene (since ca. 6.5 kyr B.P.). We propose that this was caused by changes in high-latitude Northern Hemisphere ice volume and middle- to high-latitude Northern Hemisphere atmospheric temperatures, respectively. We also observed an anti-correlation between EAWM and East Asian summer monsoon. Our findings provide a robust solution to the debate regarding Holocene EAWM changes and contribute to the understanding of potential future variations in EAWM intensity.


2021 ◽  
pp. 118213
Author(s):  
L.I. Yanjun ◽  
A.N. Xingqin ◽  
Z.H.A.N.G. Peiqun ◽  
Y.A.N.G. Jianling ◽  
W.A.N.G. Chao ◽  
...  

The Holocene ◽  
2021 ◽  
pp. 095968362110190
Author(s):  
Tsai-Wen Lin ◽  
Stefanie Kaboth-Bahr ◽  
Kweku Afrifa Yamoah ◽  
André Bahr ◽  
George Burr ◽  
...  

The East Asian Winter Monsoon (EAWM) is a fundamental part of the global monsoon system that affects nearly one-quarter of the world’s population. Robust paleoclimate reconstructions in East Asia are complicated by multiple sources of precipitation. These sources, such as the EAWM and typhoons, need to be disentangled in order to understand the dominant source of precipitation influencing the past and current climate. Taiwan, situated within the subtropical East Asian monsoon system, provides a unique opportunity to study monsoon and typhoon variability through time. Here we combine sediment trap data with down-core records from Cueifong Lake in northeastern Taiwan to reconstruct monsoonal rainfall fluctuations over the past 3000 years. The monthly collected grain-size data indicate that a decrease in sediment grain size reflects the strength of the EAWM. End member modelling analysis (EMMA) on sediment core and trap data reveals two dominant grain-size end-members (EMs), with the coarse EM 2 representing a robust indicator of EAWM strength. The downcore variations of EM 2 show a gradual decrease over the past 3000 years indicating a gradual strengthening of the EAWM, in agreement with other published EAWM records. This enhanced late-Holocene EAWM can be linked to the expansion of sea-ice cover in the western Arctic Ocean caused by decreased summer insolation.


Sign in / Sign up

Export Citation Format

Share Document