3D printing highly stretchable conductors for flexible electronics with low signal hysteresis

Author(s):  
Jun Zhou ◽  
Honghao Yan ◽  
Chengyun Wang ◽  
Huaqiang Gong ◽  
Qiuxiao Nie ◽  
...  
2021 ◽  
Vol 7 (2) ◽  
pp. eaba4261
Author(s):  
Qi Ge ◽  
Zhe Chen ◽  
Jianxiang Cheng ◽  
Biao Zhang ◽  
Yuan-Fang Zhang ◽  
...  

Hydrogel-polymer hybrids have been widely used for various applications such as biomedical devices and flexible electronics. However, the current technologies constrain the geometries of hydrogel-polymer hybrid to laminates consisting of hydrogel with silicone rubbers. This greatly limits functionality and performance of hydrogel-polymer–based devices and machines. Here, we report a simple yet versatile multimaterial 3D printing approach to fabricate complex hybrid 3D structures consisting of highly stretchable and high–water content acrylamide-PEGDA (AP) hydrogels covalently bonded with diverse UV curable polymers. The hybrid structures are printed on a self-built DLP-based multimaterial 3D printer. We realize covalent bonding between AP hydrogel and other polymers through incomplete polymerization of AP hydrogel initiated by the water-soluble photoinitiator TPO nanoparticles. We demonstrate a few applications taking advantage of this approach. The proposed approach paves a new way to realize multifunctional soft devices and machines by bonding hydrogel with other polymers in 3D forms.


2018 ◽  
Vol 6 (20) ◽  
pp. 3246-3253 ◽  
Author(s):  
Biao Zhang ◽  
Shiya Li ◽  
Hardik Hingorani ◽  
Ahmad Serjouei ◽  
Liraz Larush ◽  
...  

We report a highly stretchable hydrogel system that is suitable for digital light processing (DLP) based high-resolution multimaterial 3D printing.


2019 ◽  
Author(s):  
◽  
Jheng-Wun Su

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Learning from nature livings, especially those that can respond to the stimuli and change the shape, is attracting increasing interests in a wide variety of research fields. There is a significant need of developing synthetic materials that can mimic these living systems to show dynamic and adaptive shape-changing functions. Although various fabrication methods including molding, micro-fabrication and photolithography have been developed to fabricate the dynamic materials, they all have shown some limits. At present, 3D printing is a promising technique, which provides a cost effective, accurate and customized method to form 3D structures. The recently new emerging technique, 4D printing, which employs the 3D printing to print the active materials for dynamic 3D structures, shows a great potential for various applications such as tissue engineering, flexible electronics, and soft robotics. Despite much recent progress, this technology and its application in 3D dynamic structure fabrication is still in its infancy. My Ph.D. dissertation focuses on 4D printing of programmable polymeric materials that exhibits complex, reversible, shape transformations as well as enriching the printable material library by exploring various active materials for 4D printing technology. Chapter 1 introduces the current development of active materials and methodologies. Much attention is paid to the recent progress and its merits and demerits. Chapter 2 presents a simple and inexpensive 4D printing of waterborne polyurethane paint (PU) composites that are fabricated by mixing PU with micro-size preswollen carboxymethyl cellulose (CMC) and silicon oxide nanoparticle (NPs), respectively. Chapter 3 presents the 4D printing of a commercial polymer, SU-8, which has yet been reported in this field. The self-morphing behaviors of the printed SU-8 structures are induced by spatial control of swelling medium inside the SU-8 matrix. In Chapter 4, machine learning algorithms are applied to evaluate the shape-morphing behaviors of 4D printed objects. After the model optimization by tuning the hyperparameters the obtained machine learning models enable to accurately predict the final curvatures and curving angles of the 4D printed SU-8 structures from given input geometrical information. This initial success show that these data-driven surrogate models can well circumvent the challenge of human centered trial-and-error process in optimizing the printed structures, thereby pushing the research in 4D printing to a new height.


2020 ◽  
Vol 11 (29) ◽  
pp. 4741-4748
Author(s):  
Heng Chen ◽  
Beibei Hao ◽  
Penghui Ge ◽  
Shaojun Chen

Self-healing and 3D printing prefabricatable physically crosslinked hydrogels were prepared by copolymerization of butyl acrylate, 2-(dimethylamino)ethyl methacrylate, and methacrylic acid, followed by soaking in water.


Author(s):  
Yeasir Arafat ◽  
Rahul Panat ◽  
Indranath Dutta

Interconnects that can deform under monotonous and/or repeated loading are increasingly important to a new class of electronic devices used for wearable applications. Such interconnects integrate different material sets such as polymers and metallic conductors and are subjected to large strain levels. A typical method to overcome the material incompatibility involves the conductor in the form of a serpentine or an out-of-the plane buckled geometry. In this paper, we demonstrate a novel combination of interconnect materials that enables significant improvement in the interconnect stretchability using Indium over the state-of-the-art without affecting the system performance. This was achieved without the necessity of the serpentine interconnects geometry that significantly improves the routing density. The manufacturing method used for this approach is also described. Finally, we discuss the cost competitiveness of the materials and the manufacturing method to assess the commercial viability of this approach. (5nm)


2017 ◽  
Vol 9 (49) ◽  
pp. 43239-43249 ◽  
Author(s):  
Wei Luo ◽  
Tongfei Wu ◽  
Biqiong Chen ◽  
Mei Liang ◽  
Huawei Zou

Nanoscale ◽  
2018 ◽  
Vol 10 (43) ◽  
pp. 20096-20107 ◽  
Author(s):  
Shuiren Liu ◽  
Xinlei Shi ◽  
Xiran Li ◽  
Yang Sun ◽  
Jian Zhu ◽  
...  

A versatile gelation strategy was developed to obtain thixotropic nanowire gels for 3D printing of flexible electronics.


2016 ◽  
Vol 4 (19) ◽  
pp. 4150-4154 ◽  
Author(s):  
Tongfei Wu ◽  
Biqiong Chen

A graphite composite dough exhibited rapid mechanically and electrically self-healing properties under ambient conditions and showed potential for highly stretchable conductor applications.


Sign in / Sign up

Export Citation Format

Share Document