3D printing of active polymeric materials

2019 ◽  
Author(s):  
◽  
Jheng-Wun Su

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Learning from nature livings, especially those that can respond to the stimuli and change the shape, is attracting increasing interests in a wide variety of research fields. There is a significant need of developing synthetic materials that can mimic these living systems to show dynamic and adaptive shape-changing functions. Although various fabrication methods including molding, micro-fabrication and photolithography have been developed to fabricate the dynamic materials, they all have shown some limits. At present, 3D printing is a promising technique, which provides a cost effective, accurate and customized method to form 3D structures. The recently new emerging technique, 4D printing, which employs the 3D printing to print the active materials for dynamic 3D structures, shows a great potential for various applications such as tissue engineering, flexible electronics, and soft robotics. Despite much recent progress, this technology and its application in 3D dynamic structure fabrication is still in its infancy. My Ph.D. dissertation focuses on 4D printing of programmable polymeric materials that exhibits complex, reversible, shape transformations as well as enriching the printable material library by exploring various active materials for 4D printing technology. Chapter 1 introduces the current development of active materials and methodologies. Much attention is paid to the recent progress and its merits and demerits. Chapter 2 presents a simple and inexpensive 4D printing of waterborne polyurethane paint (PU) composites that are fabricated by mixing PU with micro-size preswollen carboxymethyl cellulose (CMC) and silicon oxide nanoparticle (NPs), respectively. Chapter 3 presents the 4D printing of a commercial polymer, SU-8, which has yet been reported in this field. The self-morphing behaviors of the printed SU-8 structures are induced by spatial control of swelling medium inside the SU-8 matrix. In Chapter 4, machine learning algorithms are applied to evaluate the shape-morphing behaviors of 4D printed objects. After the model optimization by tuning the hyperparameters the obtained machine learning models enable to accurately predict the final curvatures and curving angles of the 4D printed SU-8 structures from given input geometrical information. This initial success show that these data-driven surrogate models can well circumvent the challenge of human centered trial-and-error process in optimizing the printed structures, thereby pushing the research in 4D printing to a new height.

Author(s):  
Amandeep Singh Bhatia ◽  
Renata Wong

Quantum computing is a new exciting field which can be exploited to great speed and innovation in machine learning and artificial intelligence. Quantum machine learning at crossroads explores the interaction between quantum computing and machine learning, supplementing each other to create models and also to accelerate existing machine learning models predicting better and accurate classifications. The main purpose is to explore methods, concepts, theories, and algorithms that focus and utilize quantum computing features such as superposition and entanglement to enhance the abilities of machine learning computations enormously faster. It is a natural goal to study the present and future quantum technologies with machine learning that can enhance the existing classical algorithms. The objective of this chapter is to facilitate the reader to grasp the key components involved in the field to be able to understand the essentialities of the subject and thus can compare computations of quantum computing with its counterpart classical machine learning algorithms.


Soft Matter ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 765-772 ◽  
Author(s):  
Jheng-Wun Su ◽  
Xiang Tao ◽  
Heng Deng ◽  
Cheng Zhang ◽  
Shan Jiang ◽  
...  

There is a significant need of advanced materials that can be fabricated into functional devices with defined three-dimensional (3D) structures for application in tissue engineering, flexible electronics, and soft robotics.


2019 ◽  
Vol 63 (4) ◽  
pp. 532-544 ◽  
Author(s):  
SuQian Ma ◽  
YunPeng Zhang ◽  
Meng Wang ◽  
YunHong Liang ◽  
Lei Ren ◽  
...  

2020 ◽  
Vol 10 (21) ◽  
pp. 7470
Author(s):  
Sung-Uk Zhang

Polylactic acid (PLA) is the most common polymeric material in the 3D printing industry but degrades under harsh environmental conditions such as under exposure to sunlight, high-temperatures, water, soil, and bacteria. An understanding of degradation phenomena of PLA materials is critical to manufacturing robust products by using 3D printing technologies. The objective of this study is to evaluate four machine learning algorithms to classify the degree of thermal degradation of heat-treated PLA materials based on Fourier transform infrared spectroscopy (FTIR) data. In this study, 3D printed PLA specimens were subjected to high-temperatures for extended periods of time to simulate thermal degradation and subsequently examined by using two types of FTIR spectrometers: desktop and portable spectrometers. Classifiers created by multi-class logistic regression and multi-class neural networks were appropriate prediction models for these datasets.


EP Europace ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Panos Vardas ◽  
Martin Cowie ◽  
Nikolaos Dagres ◽  
Dimitrios Asvestas ◽  
Stylianos Tzeis ◽  
...  

Abstract This review aims to provide a comprehensive recapitulation of the evolution in the field of cardiac rhythm monitoring, shedding light in recent progress made in multilead ECG systems and wearable devices, with emphasis on the promising role of the artificial intelligence and computational techniques in the detection of cardiac abnormalities.


2020 ◽  
Author(s):  
◽  
Heng Deng

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI-COLUMBIA AT REQUEST OF AUTHOR.] Inspired by ubiquitous phenomena of shape transformation in nature, extensive research effort has been devoted to self-morphing materials in recent decades. The self-morphing materials transfer their shapes from 2D planar films into 3D structures under environmental triggers such as humidity, pH, temperature, and light. Due to the extreme values of shape transformation, this kind of materials are invaluable for fabrication of various devices and systems, including flexible electronics, displays, artificial muscles, microfluidic valves and gates, actuation components in soft robotics and so on. The quintessence of fabricating such materials lies in programming structural anisotropies in them. Although various strategies and techniques have been developed to realize such a goal, this research area is still in its infant stages. New strategies and new techniques are still strongly desired. This dissertation focuses on exploring new possibilities of generating and programming anisotropies to develop novel self-morphing materials. New types of anisotropies are realized by controlling the distribution of polymeric crystal phase (Chapter 2), swellable guest medium (Chapter 3), laser induced graphene (Chapter 4), phase change microstructures (Chapter 5), and soft-stiff hybridized structures (Chapter 6) in self-morphing materials. Programmable shape changing behaviors, such as bending, folding, helical curling and buckling, were demonstrated on these materials by pattering the anisotropic structures. Moreover, for the first time, we demonstrate that the CO2 laser direct writing, which is normally used as a cutting tool in industry, has shown great potential in programming anisotropies in these newly developed self-morphing materials. These demonstrated strategies and techniques offer unique capabilities in fabricating functional self-morphing devices such as soft gripper, locomotive robot, rewritable paper, reconfigurable pneumatic actuator, and acoustic metamaterials.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1864 ◽  
Author(s):  
Ming-You Shie ◽  
Yu-Fang Shen ◽  
Suryani Dyah Astuti ◽  
Alvin Kai-Xing Lee ◽  
Shu-Hsien Lin ◽  
...  

The purpose of 4D printing is to embed a product design into a deformable smart material using a traditional 3D printer. The 3D printed object can be assembled or transformed into intended designs by applying certain conditions or forms of stimulation such as temperature, pressure, humidity, pH, wind, or light. Simply put, 4D printing is a continuum of 3D printing technology that is now able to print objects which change over time. In previous studies, many smart materials were shown to have 4D printing characteristics. In this paper, we specifically review the current application, respective activation methods, characteristics, and future prospects of various polymeric materials in 4D printing, which are expected to contribute to the development of 4D printing polymeric materials and technology.


2020 ◽  
Vol 39 (5) ◽  
pp. 6579-6590
Author(s):  
Sandy Çağlıyor ◽  
Başar Öztayşi ◽  
Selime Sezgin

The motion picture industry is one of the largest industries worldwide and has significant importance in the global economy. Considering the high stakes and high risks in the industry, forecast models and decision support systems are gaining importance. Several attempts have been made to estimate the theatrical performance of a movie before or at the early stages of its release. Nevertheless, these models are mostly used for predicting domestic performances and the industry still struggles to predict box office performances in overseas markets. In this study, the aim is to design a forecast model using different machine learning algorithms to estimate the theatrical success of US movies in Turkey. From various sources, a dataset of 1559 movies is constructed. Firstly, independent variables are grouped as pre-release, distributor type, and international distribution based on their characteristic. The number of attendances is discretized into three classes. Four popular machine learning algorithms, artificial neural networks, decision tree regression and gradient boosting tree and random forest are employed, and the impact of each group is observed by compared by the performance models. Then the number of target classes is increased into five and eight and results are compared with the previously developed models in the literature.


2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Lin Lin ◽  
Xiufang Liang

The online English teaching system has certain requirements for the intelligent scoring system, and the most difficult stage of intelligent scoring in the English test is to score the English composition through the intelligent model. In order to improve the intelligence of English composition scoring, based on machine learning algorithms, this study combines intelligent image recognition technology to improve machine learning algorithms, and proposes an improved MSER-based character candidate region extraction algorithm and a convolutional neural network-based pseudo-character region filtering algorithm. In addition, in order to verify whether the algorithm model proposed in this paper meets the requirements of the group text, that is, to verify the feasibility of the algorithm, the performance of the model proposed in this study is analyzed through design experiments. Moreover, the basic conditions for composition scoring are input into the model as a constraint model. The research results show that the algorithm proposed in this paper has a certain practical effect, and it can be applied to the English assessment system and the online assessment system of the homework evaluation system algorithm system.


Sign in / Sign up

Export Citation Format

Share Document