Thermomagnetic behavior of a nonlocal finite elastic rod heated by a moving heat source via a fractional derivative heat equation with a non-singular kernel

Author(s):  
Ahmed E. Abouelregal
2019 ◽  
Vol 11 (02) ◽  
pp. 2050002 ◽  
Author(s):  
Abhik Sur ◽  
Sudip Mondal ◽  
M. Kanoria

Modeling and understanding heat transport and temperature variations within biological tissues and body organs are key issues in medical thermal therapeutic applications, such as hyperthermia cancer treatment. In this analysis, the bio-heat equation has been studied in the context of a new formulation using Caputo–Fabrizio (CF) heat transport law. The heat equation for this problem involving the Three-Phase (3P)-lag model under two-temperature theory. The Laplace transform technique is implemented to solve the governing equations. The influences of the CF order, the two-temperature parameter and moving heat source velocity on the temperature of skin tissues have been precisely investigated. The numerical inversion of the Laplace transform is carried out using the Zakian method. The numerical outcomes of conductive temperature and thermodynamic temperatures have been represented graphically. Excellent predictive capability is demonstrated for identification of appropriate procedure to select different CF order to reach effective heating in hyperthermia treatment. Significant effect of thermal therapy is reported due to the effect of CF order, the two-temperature parameter and the velocity of moving heat source as well.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ali Kabiri ◽  
Mohammad Reza Talaee

AbstractThe one-dimensional hyperbolic Pennes bioheat equation under instantaneous moving heat source is solved analytically based on the Eigenvalue method. Comparison with results of in vivo experiments performed earlier by other authors shows the excellent prediction of the presented closed-form solution. We present three examples for calculating the Arrhenius equation to predict the tissue thermal damage analysis with our solution, i.e., characteristics of skin, liver, and kidney are modeled by using their thermophysical properties. Furthermore, the effects of moving velocity and perfusion rate on temperature profiles and thermal tissue damage are investigated. Results illustrate that the perfusion rate plays the cooling role in the heating source moving path. Also, increasing the moving velocity leads to a decrease in absorbed heat and temperature profiles. The closed-form analytical solution could be applied to verify the numerical heating model and optimize surgery planning parameters.


1972 ◽  
Vol 22 (3) ◽  
pp. 381-385 ◽  
Author(s):  
L. A. Brichkin ◽  
Yu. V. Darinskii ◽  
L. M. Pustyl'nikov

2007 ◽  
Vol 353-358 ◽  
pp. 1149-1152
Author(s):  
Tian Hu He ◽  
Li Cao

Based on the Lord and Shulman generalized thermo-elastic theory, the dynamic thermal and elastic responses of a piezoelectric rod fixed at both ends and subjected to a moving heat source are investigated. The generalized piezoelectric-thermoelastic coupled governing equations are formulated. By means of Laplace transformation and numerical Laplace inversion the governing equations are solved. Numerical calculation for stress, displacement and temperature within the rod is carried out and displayed graphically. The effect of moving heat source speed on temperature, stress and temperature is studied. It is found from the distributions that the temperature, thermally induced displacement and stress of the rod are found to decrease at large source speed.


1999 ◽  
Vol 42 (4) ◽  
pp. 499-506 ◽  
Author(s):  
Ryusuke KAWAMURA ◽  
Yoshinobu TANIGAWA ◽  
Hideki WATANABE ◽  
Katsuyuki YAMASAKI

2014 ◽  
Vol 92 (5) ◽  
pp. 425-434 ◽  
Author(s):  
Sunita Deswal ◽  
Renu Yadav

The dynamical interactions caused by a line heat source moving inside a homogeneous isotropic thermo-microstretch viscoelastic half space, whose surface is subjected to a thermal load, are investigated. The formulation is in the context of generalized thermoelasticity theories proposed by Lord and Shulman (J. Mech. Phys. Solid, 15, 299 (1967)) and Green and Lindsay (Thermoelasticity, J. Elasticity, 2, 1 (1972)). The surface is assumed to be traction free. The solutions in terms of displacement components, mechanical stresses, temperature, couple stress, and microstress distribution are procured by employing the normal mode analysis. The numerical estimates of the considered variables are obtained for an aluminium–epoxy material. The results obtained are demonstrated graphically to show the effect of moving heat source and viscosity on the displacement, stresses, and temperature distribution.


Author(s):  
Yaqi Zhang ◽  
Vadim Shapiro ◽  
Paul Witherell

Abstract Many additive manufacturing (AM) processes are driven by a moving heat source. Thermal field evolution during the manufacturing process plays an important role in determining both geometric and mechanical properties of the fabricated parts. Thermal simulation of AM processes is challenging due to the geometric complexity of the manufacturing process and inherent computational complexity that requires a numerical solution at every time increment of the process. We propose a new general computational framework that supports scalable thermal simulation at path scale of any AM process driven by a moving heat source. The proposed framework has three novel ingredients. First, the path-level discretization is process-aware, which is based on the manufacturing primitives described by the scan path and the thermal model is formulated directly in terms of manufacturing primitives. Second, a spatial data structure, called contact graph, is used to represent the discretized domain and capture all possible thermal interactions during the simulation. Finally, the simulation is localized based on specific physical parameters of the manufacturing process, requiring at most a constant number of updates at each time step. The latter implies that the constructed simulation not only scales to handle three-dimensional (3D) printed components of arbitrary complexity but also can achieve real-time performance. To demonstrate the efficacy and generality of the framework, it has been successfully applied to build thermal simulations of two different AM processes, fused deposition modeling (FDM) and powder bed fusion (PBF).


Sign in / Sign up

Export Citation Format

Share Document