Transportation of Marangoni convection with dust particles random motion in flow of hybrid nanomaterials

Author(s):  
M. Ijaz Khan ◽  
M. Y. Malik ◽  
Faryal Chaudhry ◽  
Sami Ullah Khan ◽  
Essam Roshdy El-Zahar
2021 ◽  
Author(s):  
M. Ijaz Khan

Abstract Here we are working on the flow of dust particles in hybrid nanofluid. Marangoni convective flow of hybrid nanofluid is accounted by considering silver and copper as nanoparticles and water as base fluid. Dust particles and nanoparticles are used in this flow are spherical type. For thermal conductivity we have considered the Maxwell model. Porous medium is placed over a stretching sheet. Flow is generated via stretching sheet. MHD effects are also considered. Nonlinear equation of fluid phase and dust phase are converted in to ODE's by suitable transformations. These ordinary differential equations are solved numerically. Effect of involved dimensionless variables against velocity and temperature of hybrid nanofluid and dust phase, skin friction and Nusselt number of hybrid nanofluid is studied through graphs and tables. It is observed that temperature and velocity is more in case of hybrid nanofluid as compared to dust phase. Velocity of Ag-Cu water hybrid nanofluid enhances for greater mass concentration of dust particles. Velocity in both phase decay for higher porosity variable. Good match of results are seen by comparing current situation to earlier study in particular case.


Author(s):  
Sadia Siddiqa ◽  
Naheed Begum ◽  
Md. Anwar Hossain ◽  
Abdullah A. A. A. Al-Rashed

In this paper, numerical solutions to thermally radiating Marangoni convection of dusty fluid flow along a vertical wavy surface are established. The results are obtained with the understanding that the dust particles are of uniform size and dispersed in optically thick fluid. The numerical solutions of the dimensionless transformed equations are obtained through straightforward implicit finite difference scheme. In order to analyze the influence of various controlling parameters, results are displayed in the form of rate of heat transfer, skin friction coefficient, velocity and temperature profiles, streamlines, and isotherms. It is observed that the variation in thermal radiation parameter significantly alters the corresponding particle pattern and extensively promotes the heat transfer rate.


1984 ◽  
Vol 75 ◽  
pp. 597
Author(s):  
E. Grün ◽  
G.E. Morfill ◽  
T.V. Johnson ◽  
G.H. Schwehm

ABSTRACTSaturn's broad E ring, the narrow G ring and the structured and apparently time variable F ring(s), contain many micron and sub-micron sized particles, which make up the “visible” component. These rings (or ring systems) are in direct contact with magnetospheric plasma. Fluctuations in the plasma density and/or mean energy, due to magnetospheric and solar wind processes, may induce stochastic charge variations on the dust particles, which in turn lead to an orbit perturbation and spatial diffusion. It is suggested that the extent of the E ring and the braided, kinky structure of certain portions of the F rings as well as possible time variations are a result of plasma induced electromagnetic perturbations and drag forces. The G ring, in this scenario, requires some form of shepherding and should be akin to the F ring in structure. Sputtering of micron-sized dust particles in the E ring by magnetospheric ions yields lifetimes of 102to 104years. This effect as well as the plasma induced transport processes require an active source for the E ring, probably Enceladus.


Author(s):  
J. R. Porter ◽  
J. I. Goldstein ◽  
D. B. Williams

Alloy scrap metal is increasingly being used in electric arc furnace (EAF) steelmaking and the alloying elements are also found in the resulting dust. A comprehensive characterization program of EAF dust has been undertaken in collaboration with the steel industry and AISI. Samples have been collected from the furnaces of 28 steel companies representing the broad spectrum of industry practice. The program aims to develop an understanding of the mechanisms of formation so that procedures to recover residual elements or recycle the dust can be established. The multi-phase, multi-component dust particles are amenable to individual particle analysis using modern analytical electron microscopy (AEM) methods.Particles are ultrasonically dispersed and subsequently supported on carbon coated formvar films on berylium grids for microscopy. The specimens require careful treatment to prevent agglomeration during preparation which occurs as a result of the combined effects of the fine particle size and particle magnetism. A number of approaches to inhibit agglomeration are currently being evaluated including dispersal in easily sublimable organic solids and size fractioning by centrifugation.


Author(s):  
E. C. Buck ◽  
N. L. Dietz ◽  
J. K. Bates

Operations at former weapons processing facilities in the U. S. have resulted in a large volume of radionuclidecontaminated soils and residues. In an effort to improve remediation strategies and meet environmental regulations, radionuclide-bearing particles in contaminant soils from Fernald in Ohio and the Rocky Flats Plant (RFP) in Colorado have been characterized by electron microscopy. The object of these studies was to determine the form of the contaminant radionuclide, so that it properties could be established [1]. Physical separation and radiochemical analysis determined that uranium contamination at Fernald was not present exclusively in any one size/density fraction [2]. The uranium-contamination resulted from aqueous and solid product spills, air-borne dust particles, and from the operation of an incinerator on site. At RFP the contamination was from the incineration of Pu-bearing materials. Further analysis by x-ray absorption spectroscopy indicated that the majority of the uranium was in the 6+ oxidation state [3].


2003 ◽  
Vol 9 (4) ◽  
pp. 67-72 ◽  
Author(s):  
Yu.O. Klymenko ◽  
◽  
О.К. Cheremnykh ◽  

Sign in / Sign up

Export Citation Format

Share Document