scholarly journals Dynamics of Marangoni Convection in Hybrid Nanomaterials Flow With Dust Particles Random Motion

Author(s):  
M. Ijaz Khan

Abstract Here we are working on the flow of dust particles in hybrid nanofluid. Marangoni convective flow of hybrid nanofluid is accounted by considering silver and copper as nanoparticles and water as base fluid. Dust particles and nanoparticles are used in this flow are spherical type. For thermal conductivity we have considered the Maxwell model. Porous medium is placed over a stretching sheet. Flow is generated via stretching sheet. MHD effects are also considered. Nonlinear equation of fluid phase and dust phase are converted in to ODE's by suitable transformations. These ordinary differential equations are solved numerically. Effect of involved dimensionless variables against velocity and temperature of hybrid nanofluid and dust phase, skin friction and Nusselt number of hybrid nanofluid is studied through graphs and tables. It is observed that temperature and velocity is more in case of hybrid nanofluid as compared to dust phase. Velocity of Ag-Cu water hybrid nanofluid enhances for greater mass concentration of dust particles. Velocity in both phase decay for higher porosity variable. Good match of results are seen by comparing current situation to earlier study in particular case.

Author(s):  
M. Ijaz Khan ◽  
M. Y. Malik ◽  
Faryal Chaudhry ◽  
Sami Ullah Khan ◽  
Essam Roshdy El-Zahar

Heat Transfer ◽  
2021 ◽  
Author(s):  
Hogarehally Basavarajappa Mallikarjuna ◽  
Tigalappa Nirmala ◽  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Radhika Manghat ◽  
Ravikumar Shashikala Varun Kumar

2021 ◽  
Author(s):  
Noor Wali Khan ◽  
Arshad Khan ◽  
Muhammad Usman ◽  
Taza Gul ◽  
Abir Mouldi ◽  
...  

Abstract The investigations about thin-film flow play a vital role in the field of optoelectronics and magnetic devices. Thin films are reasonably hard and thermally stable but are more fragile. The thermal stability of thin film can be further improved by incorporating the effects of nanoparticles. In the current work, a stretchable surface is considered upon which hybrid nanofluid thin-film flow is taken into account. The idea of augmenting heat transmission is focused in current work by making use of hybrid nanofluid. The flow is affected by variations in the viscous forces along with viscous dissipation effects and Marangoni convection. A time-constrained magnetic field is applied in the normal direction to the flow system. The equations governing the flow system are shifted to a non-dimensional form by applying similarity variables. The homotopy analysis method (HAM) has been employed to find the solution of resultant equations. It has been noticed in this study that, the flow characteristics decline with augmentation in magnetic, viscosity, and unsteadiness parameters while grow up with enhancing values of thin-film parameter. Thermal characteristics are supported by the growing values of the Eckert number and unsteadiness parameter while opposed by the viscosity parameter and Prandtl number. The numerical impact of different emerging parameters upon skin friction and Nusselt number has been calculated in tabular form. A comparison of current work with established result has carried out with a good agreement in both results.


2016 ◽  
Vol 5 (1) ◽  
pp. 29
Author(s):  
Madhura K R ◽  
Uma M S

<p><span lang="EN-IN">The flow of an unsteady incompressible electrically conducting fluid with uniform distribution of dust particles in a constricted channel has been studied. The medium is assumed to be porous in nature. The governing equations of motion are treated analytically and the expressions are obtained by using variable separable and Laplace transform techniques. The influence of the dust particles on the velocity distributions of the fluid are investigated for various cases and the results are illustrated by varying parameters like Hartmann number, deposition thickness on the walls of the cylinder and the permeability of the porous medium on the velocity of dust and fluid phase.</span></p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anwar Saeed ◽  
Muhammad Bilal ◽  
Taza Gul ◽  
Poom Kumam ◽  
Amir Khan ◽  
...  

AbstractFractional calculus characterizes a function at those points, where classical calculus failed. In the current study, we explored the fractional behavior of the stagnation point flow of hybrid nano liquid consisting of TiO2 and Ag nanoparticles across a stretching sheet. Silver Ag and Titanium dioxide TiO2 nanocomposites are one of the most significant and fascinating nanocomposites perform an important role in nanobiotechnology, especially in nanomedicine and for cancer cell therapy since these metal nanoparticles are thought to improve photocatalytic operation. The fluid movement over a stretching layer is subjected to electric and magnetic fields. The problem has been formulated in the form of the system of PDEs, which are reduced to the system of fractional-order ODEs by implementing the fractional similarity framework. The obtained fractional order differential equations are further solved via fractional code FDE-12 based on Caputo derivative. It has been perceived that the drifting velocity generated by the electric field E significantly improves the velocity and heat transition rate of blood. The fractional model is more generalized and applicable than the classical one.


Author(s):  
Anisah Dasman ◽  
Abdul Rahman Mohd Kasim ◽  
Iskandar Waini ◽  
Najiyah Safwa Khashi’ie

This paper aims to present the numerical study of a dusty micropolar fluid due to a stretching sheet with constant wall temperature. Using the suitable similarity transformation, the governing partial differential equations for two-phase flows of the fluid and the dust particles are reduced to the form of ordinary differential equations. The ordinary differential equations are then numerically analysed using the bvp4c function in the Matlab software. The validity of present numerical results was checked by comparing them with the previous study. The results graphically show the numerical solutions of velocity, temperature and microrotation distributions for several values of the material parameter K, fluid-particle interaction parameter and Prandtl number for both fluid and dust phase. The effect of microrotation is investigated and analysed as well. It is found that the distributions are significantly influenced by the investigated parameters for both phases.


2020 ◽  
Vol 399 ◽  
pp. 65-75 ◽  
Author(s):  
Abdul Rahman Mohd Kasim ◽  
Nur Syamilah Arifin ◽  
Syazwani Mohd Zokri ◽  
Mohd Zuki Salleh

The investigation on the interaction between solid and fluid under combined convective flow has been carried out mathematically. The Jeffrey fluid model is taken as the fluid phase and the model is being embedded with the dust particles (solid phase). This two-phase model is constructed by introducing the fluid-particles interaction forces in the momentum equations of the fluid and dust phases, respectively. The natural and forced convections together with the aligned magnetic field are considered on the fluid flow. Also, the Newtonian heating as thermal boundary condition is induced on the vertical stretching sheet. In order to reduce the complexity of the model, the governing equations are transformed from partial differential equation into ordinary differential equation via suitable similarity transformation. The solutions are obtained in terms of velocity and temperature profiles for the fluid and particles phases respectively whereby the Keller-box method is utilized to obtain the desired outcomes. The influences of several significant physical parameters are visualized graphically to clarify the flow and heat transfer characteristic for both phases. The investigation found that the fluid’s velocity is affected by the presence of the dust particles which led to decelerate the fluid transference. The present flow model is able to be compared with the single-phase fluid cases if the fluid-particle interaction parameter is ignored.


Sign in / Sign up

Export Citation Format

Share Document