Low-frequency brain stimulation to the left dorsolateral prefrontal cortex increases the negative impact of social exclusion among those high in personal distress

2016 ◽  
Vol 12 (3) ◽  
pp. 237-241 ◽  
Author(s):  
Bernadette Mary Fitzgibbon ◽  
Melissa Kirkovski ◽  
Neil Wayne Bailey ◽  
Richard Hilton Thomson ◽  
Naomi Eisenberger ◽  
...  
Autism ◽  
2019 ◽  
Vol 23 (7) ◽  
pp. 1614-1629 ◽  
Author(s):  
Fumi Masuda ◽  
Shinichiro Nakajima ◽  
Takahiro Miyazaki ◽  
Ryosuke Tarumi ◽  
Kamiyu Ogyu ◽  
...  

Neurodevelopmental disorders, including autism spectrum disorder, are common in children and adolescents, but treatment strategies remain limited. Although repetitive transcranial magnetic stimulation has been studied for neurodevelopmental disorders, there is no clear consensus on its therapeutic effects. This systematic review examined literature on repetitive transcranial magnetic stimulation for children and adolescents with neurodevelopmental disorders published up to 2018 using the PubMed database. The search identified 264 articles and 14 articles met eligibility criteria. Twelve of these studies used conventional repetitive transcranial magnetic stimulation and two studies used theta burst stimulation. No severe adverse effects were reported in these studies. In patients with autism spectrum disorder, low-frequency repetitive transcranial magnetic stimulation and intermittent theta burst stimulation applied to the dorsolateral prefrontal cortex may have therapeutic effects on social functioning and repetitive behaviors. In patients with attention deficit/hyperactivity disorder, low-frequency repetitive transcranial magnetic stimulation applied to the left dorsolateral prefrontal cortex and high-frequency repetitive transcranial magnetic stimulation applied to the right dorsolateral prefrontal cortex may target inattention, hyperactivity, and impulsivity. In patients with tic disorders, low-frequency repetitive transcranial magnetic stimulation applied to the bilateral supplementary motor area improved tic symptom severity. This systematic review suggests that repetitive transcranial magnetic stimulation may be a promising intervention for children and adolescents with neurodevelopmental disorders. The results warrant further large randomized controlled trials of repetitive transcranial magnetic stimulation in children with neurodevelopmental disorders.


2020 ◽  
Vol 54 (6) ◽  
pp. 582-590 ◽  
Author(s):  
Binlong Zhang ◽  
Jiao Liu ◽  
Tuya Bao ◽  
Georgia Wilson ◽  
Joel Park ◽  
...  

Objective: Many noninvasive brain stimulation techniques have been applied to treat depressive disorders. However, the target brain region in most noninvasive brain stimulation studies is the dorsolateral prefrontal cortex. Exploring new stimulation locations may improve the efficacy of noninvasive brain stimulation for depressive disorders. We aimed to explore potential noninvasive brain stimulation locations for depressive disorders through a meta-analysis and a functional connectivity approach. Methods: We conducted a meta-analysis of 395 functional magnetic resonance imaging studies to identify depressive disorder–associated brain regions as regions of interest. Then, we ran resting-state functional connectivity analysis with three different pipelines in 40 depression patients to find brain surface regions correlated with these regions of interest. The 10–20 system coordinates corresponding to these brain surface regions were considered as potential locations for noninvasive brain stimulation. Results: The 10–20 system coordinates corresponding to the bilateral dorsolateral prefrontal cortex, bilateral inferior frontal gyrus, medial prefrontal cortex, supplementary motor area, bilateral supramarginal gyrus, bilateral primary motor cortex, bilateral operculum, left angular gyrus and right middle temporal gyrus were identified as potential locations for noninvasive brain stimulation in depressive disorders. The coordinates were: posterior to F3, posterior to F4, superior to F3, posterior to F7, anterior to C4, P3, midpoint of F7–T3, posterior to F8, anterior to C3, midpoint of Fz–Cz, midpoint of Fz–Fp1, anterior to T4, midpoint of C3–P3, and anterior to C4. Conclusion: Our study identified several potential noninvasive brain stimulation locations for depressive disorders, which may serve as a basis for future clinical investigations.


Sign in / Sign up

Export Citation Format

Share Document