scholarly journals The separations using pure water as a mobile phase in liquid chromatography using polar-embedded stationary phases

2019 ◽  
Vol 12 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Szymon Bocian ◽  
Katarzyna Krzemińska
2011 ◽  
Vol 6 (5) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Jie Ma ◽  
Yuan-Chun Ma ◽  
Daniel Wang ◽  
Fei Fei Hou ◽  
Mai Luo ◽  
...  

Two Rapid Resolution Liquid Chromatography (RRLC) methods have been developed and validated for simultaneous quantification of eight major ginsenosides from Panax species, namely, R1, Rg1, Re, Rf, Rb1, Rb2, Rc, and Rd, and flavonoids from Epimedium species, namely, epimedins A, B, and C and icariin. The analyses were performed using an Agilent 1200 series RRLC system with Phenomenex Luna C18-HST and Zorbax Eclipse XDB columns. The separation was performed with a gradient mobile phase of A (pure water) and B (acetonitrile) at a flow rate of 1.0 mL/ min and 2.5 mL/min, respectively. Both columns were kept at 40°C with the detection wavelength set at 203 nm. Specific eluted compounds were identified by using reference samples of ginsenosides R1, Rg1, Re, Rf, Rb1, Rc, Rb2, and Rd, and epimedins A, B, C and icariin. Baseline separation was achieved in less than 15 minutes for the Phenomenex Luna column and 4 minutes for the Zorbax Eclipse column. Characteristic RRLC profiles were established for complex mixtures of ginsenosides from Panax species and flavonoids from Epimedium species. Both methods developed here are effective for the quality control of formulated products containing both Panax and Epimedium varieties.


2012 ◽  
Vol 10 (3) ◽  
pp. 802-835 ◽  
Author(s):  
Anna Petruczynik

AbstractAlkaloids are biologically active compounds widely used as pharmaceuticals and synthesised as secondary methabolites in plants. Many of these compounds are strongly toxic. Therefore, they are often subject of scientific interests and analysis. Since alkaloids — basic compounds appear in aqueous solutions as ionized and unionized forms, they are difficult for chromatographic separation for peak tailing, poor systems efficiency, poor separation and poor column-to-column reproducibility. For this reason it is necessity searching of more suitable chromatographic systems for analysis of the compounds. In this article we present an overview on the separation of selected alkaloids from different chemical groups by liquid chromatography thus indicating the range of useful methods now available for alkaloid analysis. Different selectivity, system efficiency and peaks shape may be achieved in different LC methods separations by use of alternative stationary phases: silica, alumina, chemically bonded stationary phases, cation exchange phases, or by varying nonaqueous or aqueous mobile phase (containing different modifier, different buffers at different pH, ion-pairing or silanol blocker reagents). Developments in TLC (NP and RP systems), HPLC (NP, RP, HILIC, ion-exchange) are presented and the advantages of each method for alkaloids analysis are discussed.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 419
Author(s):  
Mikołaj Dembek ◽  
Szymon Bocian

Industrial research, including pharmaceutical research, is increasingly using liquid chromatography techniques. This involves the production of large quantities of hazardous and toxic organic waste. Therefore, it is essential at this point to focus interest on solutions proposed by so-called “green chemistry”. One such solution is the search for new methods or the use of new materials that will reduce waste. One of the most promising ideas is to perform chromatographic separation using pure water, without organic solvents, as a mobile phase. Such an approach requires novel stationary phases or specific chromatographic conditions, such as an elevated separation temperature. The following review paper aims to gather information on stationary phases used for separation under purely aqueous conditions at various temperatures.


2018 ◽  
Vol 11 (2) ◽  
pp. 114-119 ◽  
Author(s):  
Anna Lomenova ◽  
Katarína Hroboňová ◽  
Terézia Šolónyová

Abstract Panthenol is a biologically active compound closely related to vitamin B5 (pantothenic acid). This work deals with the separation of panthenol enantiomers using high performance liquid chromatography. Different types of chiral stationary phases (β-cyclodextrin, isopropyl carbamate cyclofructan 6, amylose tris(3,5-dimethylphenylcarbamate)) were tested in normal phase separation mode. Effect of mobile phase composition on the resolution and retention of enantiomers was studied. Two types of detectors, low-wavelength UV and polarimetric, were used. The optimal chromatographic system includes a chiral stationary phase based on amylose and a mobile phase of hexane/ethanol (60/40, v/v) where the resolution of enantiomers reached the value Rs = 2.49. Suitable chromatographic conditions were applied for the determination of panthenol enantiomers in samples of pharmaceutical preparations with the obtained recovery of more than 92 %. Linearity of the high performance liquid chromatography method with spectrophotometric detection was from 1.0 × 10−3 to 1.3 mg mL−1 (R2 = 0.998), with the limit of detection of 0.3 × 10−3 mg mL−1 for both enantiomers.


Sign in / Sign up

Export Citation Format

Share Document