scholarly journals High frequency of positive interspecific interactions revealed by individual species–area relationships for tree species in a tropical evergreen forest

2018 ◽  
Vol 11 (4) ◽  
pp. 441-450
Author(s):  
Hong Hai Nguyen ◽  
Ion C. Petritan ◽  
David F.R.P. Burslem
2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Do Thi Ngoc Le ◽  
Nguyen Van Thinh ◽  
Nguyen The Dung ◽  
Ralph Mitlöhner

The effects of disturbance regimes on the spatial patterns of the five most abundant species were investigated in three sites in a tropical forest at Xuan Nha Nature Reserve, Vietnam. Three permanent one-ha plots were established in undisturbed forest (UDF), lightly disturbed forest (LDF), and highly disturbed forest (HDF). All trees ≥5 cm DBH were measured in twenty-five 20 m × 20 m subplots. A total of 57 tree species belonging to 26 families were identified in the three forest types. The UDF had the highest basal area (30 m2 ha−1), followed by the LDF (17 m2 ha−1) and the HDF (13.0 m2 ha−1). The UDF also had the highest tree density (751 individuals ha−1) while the HDF held the lowest (478 individuals ha−1). Across all species, there were 417 “juveniles,” 267 “subadults,” and 67 “adults” in the UDF, while 274 “juveniles,” 230 “subadults,” and 36 “adults” were recorded in the LDF. 238 “juveniles,” 227 “subadults,” and 13 “adults” were obtained in the HDF. The univariate and bivariate data with pair- and mark-correlation functions of intra- and interspecific interactions of the five most abundant species changed in the three forest types. Most species indicated clumping or regular distributions at small scale, but a high ratio of negative interspecific small-scale associations was recorded in both the LDF and HDF sites. These were, however, rare in the UDF.


2019 ◽  
Vol 30 (5) ◽  
pp. 929-939 ◽  
Author(s):  
Nestor Laurier Engone Obiang ◽  
David Kenfack ◽  
Nicolas Picard ◽  
James A. Lutz ◽  
Pulchérie Bissiengou ◽  
...  

Phytotaxa ◽  
2021 ◽  
Vol 509 (3) ◽  
Author(s):  
SHAHID NAWAZ LANDGE ◽  
RAJENDRA D. SHINDE

Ischaemum mistryi, a new species from the Sub-Tropical evergreen forest of Tilari Ghat, Maharashtra, India, is described and illustrated. This grass is unique with its leaves drooping, mostly congregated near the base, basal sheath villous, culms compressed at the base, lower glume of the sessile spikelet linear-lanceolate to oblongish tapering and slightly curled upwards, without a sub-apical ridge, nodules absent (if present 2–4 obscure) on its keels, and upper lemma of sessile spikelet bi-partite. Morphologically it is somewhat similar to I. mangaluricum, I. travancorense and I. barbatum. We provided a table of its detailed comparison with close species as mentioned above. According to IUCN Red List Categories and Criteria, we have assessed this new species as Critically Endangered (CR). The photo plates and illustration of the grass are given to facilitate its proper identification. A short discussion is also provided at the end.


2018 ◽  
Author(s):  
F. Pina-Martins ◽  
J. Baptista ◽  
G. Pappas ◽  
O. S. Paulo

AbstractSpecies respond to global climatic changes in a local context. Understanding this process is paramount due to the pace of these changes. Tree species are particularly interesting to study in this regard due to their long generation times, sedentarism, and ecological and economic importance. Quercus suber L. is an evergreen forest tree species of the Fagaceae family with an essentially Western Mediterranean distribution. Despite frequent assessments of the species’ evolutionary history, large-scale genetic studies have mostly relied on plastidial markers, whereas nuclear markers have been used on studies with locally focused sampling strategies. The potential response of Q. suber to global climatic changes has also been studied, under ecological modelling. In this work, “Genotyping by Sequencing” (GBS) is used to derive 2,547 SNP markers to assess the species’ evolutionary history from a nuclear DNA perspective, gain insights on how local adaptation may be shaping the species’ genetic background, and to forecast how Q. suber may respond to global climatic changes from a genetic perspective. Results reveal an essentially unstructured species, where a balance between gene flow and local adaptation keeps the species’ gene pool somewhat homogeneous across its distribution, but at the same time allows variation clines for the individuals to cope with local conditions. “Risk of Non-Adaptedness” (RONA) analyses, suggest that for the considered variables and most sampled locations, the cork oak does not require large shifts in allele frequencies to survive the predicted climatic changes. However, more research is required to integrate these results with those of ecological modelling.


REINWARDTIA ◽  
2018 ◽  
Vol 17 (2) ◽  
Author(s):  
Asep Sadili ◽  
Kuswata Kartawinata ◽  
Herwasono Soedjito ◽  
Edy Nasriadi Sambas

ADILI, A., KARTAWINATA, K., SOEDJITO, H. & SAMBAS, E. N. 2018. Tree species diversity in a pristine montane forest previously untouched by human activities in Foja Mountains, Papua, Indonesia. Reinwardtia 17(2): 133‒154. ‒‒ A study on structure and composition of the pristine montane forest previously untouched by human activities was conducted at the Foja Mountains in November 2008. We established a one-hectare plot divided into 100 subplots of 10 m × 10 m each. We enumerated all trees with DBH ≥ 10 cm which diameters were measured, heights were estimated and habitats were noted. We recorded 59 species, 42 genera and 27 families, comprising 693 trees with the total basal area (BA) of 41.35 m2/ha. The forest had lower species richness compared to those of lowland forests in Kalimantan, and Sumatra and montane forests in West Java. The Shannon-Wiener’s diversity index was 3.22. Nothofagus rubra (Importance Value, IV=47.89%) and Parinari corymbosa (IV=40.3%) were the dominant species, constituting the basis for designating the forest as the Nothofagus rubra - Parinari corymbosa association. To date, the dominance of N. rubra is unique to the Foja Mountains, as elsewhere in Papua the montane forests were dominated by N. pullei or other species. The species-area curve indicated a minimal area of 5000 m2. On the family level Fagaceae (IV=53.23%), Chrysobalanaceae (IV=40.53%) and Myristicaceae (IV=26.43%) were dominant. Verti-cally the forest consisted of four strata (A–D). In each stratum Nothofagus rubra, Platea latifolia, Parinari corymbosa and Myristica hollrungii were dominant. The diameter class distribution of Nothofagus rubra, Parinari corymbosa and Platea latifolia led us to assume that these species were regenerating well.


2020 ◽  
Vol 12 (18) ◽  
pp. 3092 ◽  
Author(s):  
Mathieu Varin ◽  
Bilel Chalghaf ◽  
Gilles Joanisse

Species identification in Quebec, Canada, is usually performed with photo-interpretation at the stand level, and often results in a lack of precision which affects forest management. Very high spatial resolution imagery, such as WorldView-3 and Light Detection and Ranging have the potential to overcome this issue. The main objective of this study is to map 11 tree species at the tree level using an object-based approach. For modeling, 240 variables were derived from WorldView-3 with pixel-based and arithmetic feature calculation techniques. A global approach (11 species) was compared to a hierarchical approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were compared: support vector machine, classification and regression tree, random forest (RF), k-nearest neighbors, and linear discriminant analysis. Each model was assessed using 16-band or first 8-band derived variables, with the results indicating higher precision for the RF technique. Higher accuracies were found using 16-band instead of 8-band derived variables for the global approach (overall accuracy (OA): 75% vs. 71%, Kappa index of agreement (KIA): 0.72 vs. 0.67) and tree type level (OA: 99% vs. 97%, KIA: 0.97 vs. 0.95). For broadleaf individual species, higher accuracy was found using first 8-band derived variables (OA: 70% vs. 68%, KIA: 0.63 vs. 0.60). No distinction was found for individual conifer species (OA: 94%, KIA: 0.93). This paper demonstrates that a hierarchical classification approach gives better results for conifer species and that using an 8-band WorldView-3 instead of a 16-band is sufficient.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e63192 ◽  
Author(s):  
Jie Yang ◽  
Nathan G. Swenson ◽  
Min Cao ◽  
George B. Chuyong ◽  
Corneille E. N. Ewango ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document