Climate vulnerability of irrigation systems in the Upper Indus Basin: insights from three Karakoram villages in northern Pakistan

2021 ◽  
pp. 1-13
Author(s):  
Muhammad Zafar Khan ◽  
Haider Abbas ◽  
Abda Khalid
Author(s):  
Muhammad Hammad ◽  
Muhammad Shoaib ◽  
Hamza Salahudin ◽  
Muhammad Azhar Inam Baig ◽  
Mudasser Muneer Khan ◽  
...  

2021 ◽  
Vol 780 ◽  
pp. 146500
Author(s):  
Ajit T. Singh ◽  
C.M. Laluraj ◽  
Parmanand Sharma ◽  
B.L. Redkar ◽  
Lavkush Kumar Patel ◽  
...  

2021 ◽  
Author(s):  
Sanita Dhaubanjar ◽  
Arthur F. Lutz ◽  
David Gernaat ◽  
Santosh Nepal ◽  
Saurav Pradhananga ◽  
...  

<p>Considering the lack of a comprehensive assessement of hydropower potential in the Upper Indus basin, we developed and implemented a systematic framework to explore four different classes of hydropower potential. Our framework uses high-resolution discharge generated by a coupled cryosphere-hydrology model as the bio-physical boundary conditions to estimate theoretical potential. Thereafter, diverse context-specific constraints are implemented stepwise to estimate the technical, economic and sustainable hydropower potential. The successive classes of hydropower potential integrate considerations for various water demands under the water-energy-food nexus, multiple geo-hazard risks, climate change, environmental protection, and socio-economic preferences. We demonstrate that the nearly two thousand Terawatt-hour of theoretical potential available annualy in the upper Indus can be misleading because a majority of this is technically and economically not viable. Even smaller potential remains if we account for the various sustainability constraints that vary spatially. Our concept of the sustainable hydropower potential enables decision makers to look beyond the energy sector when selecting hydropower projects for development to achieveenergy security under the Sustainable Development Goal 7 (SDG7).The generated portfolio of sustainable hydropower projects is superior to the current portfolio based on outdated studies because our method looks beyond theoretical possibilities and excludes projects that conflict with management objectives under other SDGs. The spatial maps with potential and the cost curves for hydropower production provide a science-based knowledge base for hydropower development in the Indus basin. Our method could similarly be adapted to inform hydropower development in other basins across the globe.</p>


2015 ◽  
Vol 19 (7) ◽  
pp. 3073-3091 ◽  
Author(s):  
J. Jägermeyr ◽  
D. Gerten ◽  
J. Heinke ◽  
S. Schaphoff ◽  
M. Kummu ◽  
...  

Abstract. Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatiotemporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a process-based representation of the three major irrigation systems (surface, sprinkler, and drip) into a bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded world map of irrigation efficiencies that are calculated in direct linkage to differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with the lowest values (< 30 %) in south Asia and sub-Saharan Africa and the highest values (> 60 %) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2469 km3 (2004–2009 average); irrigation water consumption is calculated to be 1257 km3, of which 608 km3 are non-beneficially consumed, i.e., lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76 %, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15 %, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of irrigation systems while providing a framework for assessing potential future transitions in these systems. In this paper, presented opportunities associated with irrigation improvements are significant and suggest that they should be considered an important means on the way to sustainable food security.


Sign in / Sign up

Export Citation Format

Share Document