scholarly journals Palmitate is not an effective fuel for pancreatic islets and amplifies insulin secretion independent of calcium release from endoplasmic reticulum

Islets ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 51-64 ◽  
Author(s):  
Iok Teng Kuok ◽  
Austin M. Rountree ◽  
Seung-Ryoung Jung ◽  
Ian R. Sweet
Diabetes ◽  
1994 ◽  
Vol 43 (6) ◽  
pp. 827-830 ◽  
Author(s):  
P. Marchetti ◽  
D. W. Scharp ◽  
M. Mclear ◽  
R. Gingerich ◽  
E. Finke ◽  
...  

Diabetes ◽  
1994 ◽  
Vol 43 (11) ◽  
pp. 1345-1352 ◽  
Author(s):  
A. Gardemann ◽  
K. Jungermann ◽  
V. Grosse ◽  
L. Cossel ◽  
F. Wohlrab ◽  
...  

Diabetes ◽  
1988 ◽  
Vol 37 (7) ◽  
pp. 992-996 ◽  
Author(s):  
J. Turk ◽  
J. H. Hughes ◽  
R. A. Easom ◽  
B. A. Wolf ◽  
D. W. Scharp ◽  
...  

Endocrinology ◽  
2002 ◽  
Vol 143 (4) ◽  
pp. 1253-1259 ◽  
Author(s):  
Francoise Jamen ◽  
Raymond Puech ◽  
Joel Bockaert ◽  
Philippe Brabet ◽  
Gyslaine Bertrand

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ashley M. Fields ◽  
Kevin Welle ◽  
Elaine S. Ho ◽  
Clementina Mesaros ◽  
Martha Susiarjo

AbstractIn pancreatic islets, catabolism of tryptophan into serotonin and serotonin receptor 2B (HTR2B) activation is crucial for β-cell proliferation and maternal glucose regulation during pregnancy. Factors that reduce serotonin synthesis and perturb HTR2B signaling are associated with decreased β-cell number, impaired insulin secretion, and gestational glucose intolerance in mice. Albeit the tryptophan-serotonin pathway is dependent on vitamin B6 bioavailability, how vitamin B6 deficiency impacts β-cell proliferation during pregnancy has not been investigated. In this study, we created a vitamin B6 deficient mouse model and investigated how gestational deficiency influences maternal glucose tolerance. Our studies show that gestational vitamin B6 deficiency decreases serotonin levels in maternal pancreatic islets and reduces β-cell proliferation in an HTR2B-dependent manner. These changes were associated with glucose intolerance and insulin resistance, however insulin secretion remained intact. Our findings suggest that vitamin B6 deficiency-induced gestational glucose intolerance involves additional mechanisms that are complex and insulin independent.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dorota Raj ◽  
Ola Billing ◽  
Agnieszka Podraza-Farhanieh ◽  
Bashar Kraish ◽  
Oskar Hemmingsson ◽  
...  

AbstractCisplatin is a frontline cancer therapeutic, but intrinsic or acquired resistance is common. We previously showed that cisplatin sensitivity can be achieved by inactivation of ASNA-1/TRC40 in mammalian cancer cells and in Caenorhabditis elegans. ASNA-1 has two more conserved functions: in promoting tail-anchored protein (TAP) targeting to the endoplasmic reticulum membrane and in promoting insulin secretion. However, the relation between its different functions has remained unknown. Here, we show that ASNA-1 exists in two redox states that promote TAP-targeting and insulin secretion separately. The reduced state is the one required for cisplatin resistance: an ASNA-1 point mutant, in which the protein preferentially was found in the oxidized state, was sensitive to cisplatin and defective for TAP targeting but had no insulin secretion defect. The same was true for mutants in wrb-1, which we identify as the C. elegans homolog of WRB, the ASNA1/TRC40 receptor. Finally, we uncover a previously unknown action of cisplatin induced reactive oxygen species: cisplatin induced ROS drives ASNA-1 into the oxidized form, and selectively prevents an ASNA-1-dependent TAP substrate from reaching the endoplasmic reticulum. Our work suggests that ASNA-1 acts as a redox-sensitive target for cisplatin cytotoxicity and that cisplatin resistance is likely mediated by ASNA-1-dependent TAP substrates. Treatments that promote an oxidizing tumor environment should be explored as possible means to combat cisplatin resistance.


Sign in / Sign up

Export Citation Format

Share Document