Biosorption of Cr(VI) on immobilizedHydrilla verticillatain a continuous up-flow packed bed: prediction of kinetic parameters and breakthrough curves

2012 ◽  
Vol 50 (1-3) ◽  
pp. 115-124 ◽  
Author(s):  
Santhi Raju Pilli ◽  
Vaibhav V. Goud ◽  
Kaustubha Mohanty
2010 ◽  
Vol 136 (12) ◽  
pp. 1389-1397 ◽  
Author(s):  
M. A. Martín-Lara ◽  
F. Hernáinz ◽  
G. Blázquez ◽  
G. Tenorio ◽  
M. Calero

2019 ◽  
Vol 39 (2) ◽  
Author(s):  
Viviana Eloisa Gomez Rengifo ◽  
Adriana Herrera Barros ◽  
Jorge Hernan Sanchez Toro

The adsorption capacity of acetylsalicylic acid was evaluated using carbon xerogel (CX) and carbon xerogel modified with TiO2 nanoparticles (CXM). These materials were characterized by different techniques such as Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) spectroscopy. BET surface area measurements found values of 762 m2/g and 214 m2/g for CX and CXM, respectively. Batch experiments show that the Langmuir-Freundlich model best represents the experimental adsorption isotherm, in addition to show a maximum adsorption capacity of 17,48 mg/g.  In continuous experiments, the effect of the inlet concentration and flow rate on the adsorption capacity of the micro-packed bed adsorber were evaluated. Breakthrough curves agree well with the axial dispersion model. In view of their adsorption capacity, carbon xerogels provide a potential material for the removal of emergent contaminants from the pharmaceutical industry. Besides, the incorporation of TiO2 nanoparticles allows the implementation of complementary techniques, e.g. photodegradation, as an alternative to achieve higher elimination of aqueous contaminants.


2019 ◽  
Vol 25 (4) ◽  
pp. 383-393
Author(s):  
Abel Adeyi ◽  
Siti Jamil ◽  
Luqman Abdullah ◽  
Thomas Choong ◽  
Mohammad Abdullah ◽  
...  

Thiourea-modified poly(acrylonitrile-co-acrylic acid) (TU-poly(AN-co-AA)) polymeric adsorbent was synthesized and characterized with Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM) and Zetasizer. Adsorptive removal of cationic malachite green (MG) dye from aqueous solution in a continuous TU-poly(AN-coAA) packed-bed column was studied. The influences of solution pH (2-9), inlet MG concentration (25-80 mg/L), bed depth (4-8 cm) and linear flow rate (1.5-5.0 mL/min) were investigated via assessment of the column breakthrough curves. Low pH and short bed depth, high MG concentration and flow rate led to early breakthrough of MG. According to correlation coefficients (R2) and sum of the squares of the errors (SSE) values, Thomas and Yoon-Nelson dynamic models are more suitable to describe the column experimental data compared to the Bohart-Adams model. TU-poly(AN-co-AA) exhibited effective separation of MG from the liquid phase and displayed high adsorption capacities after five regeneration cycles.


2008 ◽  
Vol 47 (5) ◽  
pp. 1603-1613 ◽  
Author(s):  
V. C. Srivastava ◽  
B. Prasad ◽  
I. M. Mishra ◽  
I. D. Mall ◽  
M. M. Swamy

Sign in / Sign up

Export Citation Format

Share Document