Coupling of physico-chemical treatment and steel membrane filtration to enhanced organic removal in wastewater treatment

2013 ◽  
Vol 51 (13-15) ◽  
pp. 2695-2701 ◽  
Author(s):  
M.A.H. Johir ◽  
S. Vigneswaran ◽  
J. Kandasamy ◽  
R. Sleigh
1972 ◽  
Vol 7 (1) ◽  
pp. 1-12
Author(s):  
A. Benedek

Abstract Recent developments in the application of activated carbon to wastewater treatment are reviewed. Particular emphasis is placed on the physico-chemical treatment of municipal waste. Technological development, adsorptive behaviour, and research needs serve as the three primary discussion topics.


2013 ◽  
Vol 9 (2) ◽  
pp. 166-173

The present study investigated tertiary physico-chemical treatment of the secondary effluent from the Chania municipal Wastewater Treatment Plant (WTP). Laboratory experiments were carried out with the aim of studying coagulation efficiency regarding reduction of turbidity, soluble COD and phosphorus both in a conventional Coagulation-Settling treatment scheme, as well as by means of Contact Filtration. The results showed that high doses of coagulants (0,5 mmol Me+3 l-1 or higher) are required to achieve significant removals of turbidity after settling. At these high doses, soluble COD can be removed by about 50%, while soluble Phosphorus by 80-95%. Ferric Chloride demonstrated slightly better removal ability as compared to Alum. The Chania WTP effluent was also treated by Contact Filtration, using a very low dose of coagulants, 0,1 mmol Me+3 l-1. Turbidity was removed by around 50%, while at this low coagulant dose removals of COD and Phosphorus were insignificant. Filtration was effective in the first 35cm of the filter bed. No significant differences were observed between the coagulants Alum and FeCl3 in the elimination of turbidity. Nevertheless, with the use of Alum a smaller filter headloss was observed, during the first two hours of continuous filtration, in comparison with the use of FeCl3 (nearly double). No difference was observed between the headloss developed at a filter depth of 5cm as compared to that developed at a depth of 70cm. This indicates that the headloss increase was due to the accumulation of suspended and colloidal solids within the first layers of the sand filter.


2002 ◽  
Vol 2 (3) ◽  
pp. 213-218 ◽  
Author(s):  
M. Salgot ◽  
M. Folch ◽  
E. Huertas ◽  
J. Tapias ◽  
D. Avellaneda ◽  
...  

Several lines of reclamation have been tested in the Palamós/Vall-Llobrega (Girona, Spain) wastewater treatment plant. Each line consists of a filtration treatment (infiltration-percolation, sand filter, ring filter and physico-chemical treatment) plus a disinfection system (UV, peracetic acid, chlorine dioxide and ozonation). Every combination has been evaluated and compared with the other possibilities. This combination of filtration and disinfection allows the use of lower doses of disinfectants, thus minimising the negative impacts of the whole process and improving the reliability of the reclamation facilities.


1995 ◽  
Vol 31 (3-4) ◽  
pp. 73-82 ◽  
Author(s):  
Hallvard Ødegaard

An experimental investigation on flocculation/flotation for direct chemical treatment of municipal wastewater was carried out. It was demonstrated that flocculation units prior to flotation must be designed and operated differently to those used prior to sedimentation. Recommendations regarding design criteria both for the flocculation unit and the flotation unit are given.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 678
Author(s):  
Stefano Alberti ◽  
Irene Basciu ◽  
Marco Vocciante ◽  
Maurizio Ferretti

In this contribution, the photoactivity upon activation by simulated sunlight of zinc oxide (ZnO) obtained from two different synthetic pathways (Acetate and Nitrate) is investigated for water purification. Different reagents and processes were exploited to obtain ZnO nanoparticles. Products have been characterized by means of X-Ray Diffraction, Scanning Electron Microscopy along with Energy Dispersive Spectrometer, Dynamic Light Scattering, and Diffuse Reflectance Measurements, to highlight the different outcomes ascribable to each synthesis. A comparison of characteristics and performances was also carried out with respect to commercial ZnO. Nanoparticles of this semiconductor can be obtained as aggregates with different degrees of purity, porosity, and shape, and their physical-chemical properties have been addressed to the specific use in wastewater treatment, testing their effectiveness on the photocatalytic degradation of methylene blue (MB) as a model pollutant. Excluding the commercial sample, experimental results evidenced a better photocatalytic behavior for the ZnO Nitrate sample annealed at 500 °C, which was found to be pure and stable in water, suggesting that ZnO could be effectively exploited as a heterogeneous photocatalyst for the degradation of emerging pollutants in water, provided that thermal treatment is included in the synthetic process.


Biofouling ◽  
2021 ◽  
pp. 1-13
Author(s):  
Md. Furkanur Rahaman Mizan ◽  
Hye Ran Cho ◽  
Md. Ashrafudoulla ◽  
Junbin Cho ◽  
Md. Iqbal Hossain ◽  
...  

2018 ◽  
Vol 19 (3) ◽  
pp. 718-724
Author(s):  
Zhenmin Cheng ◽  
Yuansong Wei ◽  
Min Gao ◽  
Junya Zhang ◽  
Liangchang Zhang ◽  
...  

Abstract A novel wastewater treatment and reuse system (WTRS) combining an anaerobic membrane bioreactor (AnMBR) and an aerobic membrane bioreactor (MBR) with the design capacity of 115 L/d was developed for a terrestrial-based controlled ecological life support system (CELSS). Results clearly showed that the WTRS realized mineralization of organic compounds and reservation of nitrogenous nutrient, therefore converting the effluent into replenishment for the hydroponic system. Trace gas emission from the WTRS could meet requirements for the whole CELSS. Compared with physico-chemical processes, the specific consumables consumption of the WTRS was advantageous but its specific energy consumption is still in need of improvement. Results of microbial community analysis were consistent with the running state of the AnMBR and the MBR.


Sign in / Sign up

Export Citation Format

Share Document