The use of computational fluid dynamics to estimate fluid residence time and flow hydrodynamics in open digesters of wastewater treatment plants: a case study

2013 ◽  
Vol 53 (10) ◽  
pp. 2613-2622 ◽  
Author(s):  
Raúl Barrio ◽  
Eduardo Blanco ◽  
Joaquín Fernández ◽  
Mónica Galdo
1999 ◽  
Vol 40 (4-5) ◽  
pp. 81-89 ◽  
Author(s):  
C. J. Brouckaert ◽  
C. A. Buckley

Computational Fluid Dynamics (CFD) studies of a secondary clarifier at Durban's Northern Wastewater Treatment Works, and of a clarifier at the potable water treatment plant at Umzinto, a small town near Durban, have been undertaken with a view to improving their load capacities. In both cases the units are located in relatively old treatment plants, which face continually increasing loads due to population growth. Increasing the capacity of existing equipment, rather than installing new equipment, constitutes an efficient use of development capital. Although the two clarifiers have considerable design differences, the CFD studies indicated remarkably similar circulating flows, which concentrate up-flow near the outer wall of the clarifier in the region of the clarified water overflow weirs. Baffles were designed to disrupt the circulation so as to distribute up-flow over a wider area, thereby reducing the maximum vertical velocities. In the case of the wastewater secondary clarifier, the modification has been implemented, and evaluated in comparative tests involving an otherwise identical unmodified clarifier. In the case of the potable water clarifier, the modification has still to be implemented.


2001 ◽  
Vol 43 (7) ◽  
pp. 39-46 ◽  
Author(s):  
I. Queinnec ◽  
D. Dochain

This paper discusses the steady-state modelling of thickening in circular secondary settlers of activated sludge processes. The limitations of the solid flux theory basic models to represent steady-state operating conditions serve as a basis to introduce more sophisticated models derived from computational fluid dynamics. Parameter identification and sensitivity studies have been performed from lab-scale continuous experiments.


2006 ◽  
Vol 53 (3) ◽  
pp. 79-89 ◽  
Author(s):  
G.C. Glover ◽  
C. Printemps ◽  
K. Essemiani ◽  
J. Meinhold

Several levels of complexity are available for modelling of wastewater treatment plants. Modelling local effects rely on computational fluid dynamics (CFD) approaches whereas activated sludge models (ASM) represent the global methodology. By applying both modelling approaches to pilot plant and full scale systems, this paper evaluates the value of each method and especially their potential combination. Model structure identification for ASM is discussed based on a full-scale closed loop oxidation ditch modelling. It is illustrated how and for what circumstances information obtained via CFD (computational fluid dynamics) analysis, residence time distribution (RTD) and other experimental means can be used. Furthermore, CFD analysis of the multiphase flow mechanisms is employed to obtain a correct description of the oxygenation capacity of the system studied, including an easy implementation of this information in the classical ASM modelling (e.g. oxygen transfer). The combination of CFD and activated sludge modelling of wastewater treatment processes is applied to three reactor configurations, a perfectly mixed reactor, a pilot scale activated sludge basin (ASB) and a real scale ASB. The application of the biological models to the CFD model is validated against experimentation for the pilot scale ASB and against a classical global ASM model response. A first step in the evaluation of the potential of the combined CFD-ASM model is performed using a full scale oxidation ditch system as testing scenario.


1999 ◽  
Vol 39 (10-11) ◽  
pp. 329-332 ◽  
Author(s):  
A. B. Karama ◽  
O. O. Onyejekwe ◽  
C. J. Brouckaert ◽  
C. A. Buckley

Adequate models for wastewater treatment are limited by the cost of constructing them. Many a time, studies carried out on wastewater treatment plants have not been very useful in enhancing their performance. As a result, numerous mathematical models presented by different researchers on sedimentation tanks and clarifiers have not been getting much attention. Recently, improvement in computers and computational techniques have led to the development of a new generation of highly efficient programs for simulating real fluid flow within any type of geometry including clarifiers and activated sludge reactors. Herein, a computational fluid dynamics code, PHOENICS, is used to determine the performance of an anaerobic zone in an activated sludge reactor. Plausible results were achieved when experimental data were compared with numerical results.


2002 ◽  
Vol 45 (4-5) ◽  
pp. 325-334 ◽  
Author(s):  
J. Alex ◽  
G. Kolisch ◽  
K. Krause

The objective of this presented project is to use the results of an CFD simulation to automatically, systematically and reliably generate an appropriate model structure for simulation of the biological processes using CSTR activated sludge compartments. Models and dynamic simulation have become important tools for research but also increasingly for the design and optimisation of wastewater treatment plants. Besides the biological models several cases are reported about the application of computational fluid dynamics (CFD) to wastewater treatment plants. One aim of the presented method to derive model structures from CFD results is to exclude the influence of empirical structure selection to the result of dynamic simulations studies of WWTPs. The second application of the approach developed is the analysis of badly performing treatment plants where the suspicion arises that bad flow behaviour such as short cut flows is part of the problem. The method suggested requires as the first step the calculation of fluid dynamics of the biological treatment step at different loading situations by use of 3-dimensional CFD simulation. The result of this information is used to generate a suitable model structure for conventional dynamic simulation of the treatment plant by use of a number of CSTR modules with a pattern of exchange flows between the tanks automatically. The method is explained in detail and the application to the WWTP Wuppertal Buchenhofen is presented.


2014 ◽  
Vol 70 (10) ◽  
pp. 1575-1584 ◽  
Author(s):  
J. Laurent ◽  
R. W. Samstag ◽  
J. M. Ducoste ◽  
A. Griborio ◽  
I. Nopens ◽  
...  

To date, computational fluid dynamics (CFD) models have been primarily used for evaluation of hydraulic problems at wastewater treatment plants (WWTPs). A potentially more powerful use, however, is to simulate integrated physical, chemical and/or biological processes involved in WWTP unit processes on a spatial scale and to use the gathered knowledge to accelerate improvement in plant models for everyday use, that is, design and optimized operation. Evolving improvements in computer speed and memory and improved software for implementing CFD, as well as for integrated processes, has allowed for broader usage of this tool for understanding, troubleshooting, and optimal design of WWTP unit processes. This paper proposes a protocol for an alternative use of CFD in process modelling, as a way to gain insight into complex systems leading to improved modelling approaches used in combination with the IWA activated sludge models and other kinetic models.


Sign in / Sign up

Export Citation Format

Share Document