Effective removal of methylene blue from aqueous solution by MnO2-modified porous CoFe2O4 microrods

2015 ◽  
Vol 57 (41) ◽  
pp. 19301-19310 ◽  
Author(s):  
Shengbiao Li ◽  
Zhigang Jia ◽  
Zhiyu Li ◽  
Jianhong Liu
Agriculture ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 114 ◽  
Author(s):  
Wen-Tien Tsai ◽  
Chien-Hung Hsu ◽  
Yu-Quan Lin

The use of biochar in the horticulture and crop fields is a recent method to improve soil fertility due to its porous features and rich nutrients. In the present study, dairy manure (DM) was used as a biomass precursor in the preparation of highly porous biochar (DM-BC) produced at specific conditions. Based on N2 adsorption-desorption isotherms and scanning electron microscopy (SEM) observations, the resulting biochar featured its microporous/mesoporous textures with a BET surface area of about 300 m2/g and total pore volume of 0.185 cm3/g, which could be a low-cost biosorbent for the effective removal of methylene blue (MB) from the aqueous solution. As observed by the energy dispersive X-ray spectroscopy (EDS), the primary inorganic nutrients on the surface of DM-BC included calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P), silicon (Si), sulfur (S), sodium (Na) and aluminum (Al). Furthermore, the resulting biochar was investigated in duplicate for its biosorption performance of cationic compound (i.e., methylene blue, MB) from the aqueous solution with various initial MB concentrations and DM-BC dosages at 25 °C. The findings showed that the biosorption kinetic parameters fitted by the pseudo-second order rate model with high correlations were consistent with its porous features. These experimental results suggested that the porous DM-based biochar could be reused as a biosorbent, biofertilizer, or soil amendments due to the high porosity and the abundance in nutrient minerals.


2016 ◽  
Vol 115 ◽  
pp. 337-342 ◽  
Author(s):  
Kien Tiek Wong ◽  
Nguk Chin Eu ◽  
Shaliza Ibrahim ◽  
Hyunook Kim ◽  
Yeomin Yoon ◽  
...  

2019 ◽  
Vol 359 ◽  
pp. 1603-1616 ◽  
Author(s):  
Rui Zhao ◽  
Yanzi Li ◽  
Bolun Sun ◽  
Shen Chao ◽  
Xiang Li ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (83) ◽  
pp. 79853-79858 ◽  
Author(s):  
Xiaowei Liu ◽  
Qingyun Wei

Porous starch-g-poly(acrylic acid) superadsorbents were prepared, which can be used for effective removal of methylene blue in water.


2015 ◽  
Vol 153 ◽  
pp. 67-75 ◽  
Author(s):  
Shanmuga Kittappa ◽  
Saravanan Pichiah ◽  
Jung Rae Kim ◽  
Yeomin Yoon ◽  
Shane A. Snyder ◽  
...  

Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


Sign in / Sign up

Export Citation Format

Share Document