Removal of heavy metal ions from its low concentrated lake water via LiBr/PES hollow fiber membrane module system

2015 ◽  
Vol 57 (43) ◽  
pp. 20388-20400 ◽  
Author(s):  
Muhammad Irfan ◽  
Ani Idris ◽  
Nur Farahah Mohd Khairuddin
2017 ◽  
Vol 36 (1-2) ◽  
pp. 287-299 ◽  
Author(s):  
Changkun Liu ◽  
Jizhen Jia ◽  
Ji’an Liu ◽  
Xiaoyan Liang

A novel polypropylene hollow fiber membrane with a new function of selective adsorption of mercury ions in aqueous solutions was successfully prepared. The surface of the polypropylene hollow fiber membrane was initially modified with polydopamine by surface polymerization, and subsequently grafted with polyacrylamide (PAM) polymer brush via the surface initiated atom transfer radical polymerization (SI-ATRP) technique (thereafter named as PP-PAM). This study investigated the adsorption performance of Hg(II) ions by PP-PAM and the effect of various influencing factors on Hg(II) ion adsorption. The experiment indicated that the Hg(II) adsorption capacity of the PP-PAM increased with the increase of the pH, and the Hg(II) adsorption kinetics was consistent with the pseudo-second-order kinetic model. The adsorption isotherm followed the Langmuir model, with the maximum adsorption capacity calculated to be 0.854 mmol/g for Hg(II) ions. The adsorption study in multi-component system indicated that PP-PAM preferentially adsorbs Hg(II) over Pb(II) ions, with significant adsorption capacity difference of the two heavy metal ions. This study provided an efficient method for the preparation of the adsorptive polypropylene hollow fiber membrane, which expands its application for the selective removal of heavy metal ions.


2019 ◽  
Vol 547 (1) ◽  
pp. 121-128
Author(s):  
Shu-Jing Yang ◽  
Bing Yu ◽  
Zi Wang ◽  
Qian-Ying Liu ◽  
Xin-Feng Zhang ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Shinji Hayashi ◽  
Rieko Yagi ◽  
Shuhei Taniguchi ◽  
Masami Uji ◽  
Hidaka Urano ◽  
...  

AbstractCell-assisted lipotransfer (CAL) is an advanced lipoinjection method that uses autologous lipotransfer with addition of a stromal vascular fraction (SVF) containing adipose-derived stromal stem cells (ASCs). The CAL procedure of manual isolation of cells from fat requires cell processing to be performed in clean environment. To isolate cells from fat without the need for a cell processing center, such as in a procedure in an operation theater, we developed a novel method for processing SVF using a closed cell washing concentration device (CCD) with a hollow fiber membrane module. The CCD consists of a sterilized closed circuit, bags and hollow fiber, semi-automatic device and the device allows removal of >99.97% of collagenase from SVF while maintaining sterility. The number of nucleated cells, ASCs and viability in SVF processed by this method were equivalent to those in SVF processed using conventional manual isolation. Our results suggest that the CCD system is as reliable as manual isolation and may also be useful for CAL. This approach will help in the development of regenerative medicine at clinics without a cell processing center.


2010 ◽  
Vol 17 (1-3) ◽  
pp. 281-287 ◽  
Author(s):  
Hiroyuki Sugaya ◽  
Hiroshi Umakoshi ◽  
K. B. M. A. Fadzil ◽  
Le Quoc Tuan ◽  
Toshinori Shimanouchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document