scholarly journals False Discovery Versus Familywise Error Rate Approaches to Outlier Detection

2016 ◽  
Vol 8 (2) ◽  
pp. 143-150 ◽  
Author(s):  
Yihuan Xu ◽  
Boris Iglewicz
Biometrika ◽  
2020 ◽  
Vol 107 (3) ◽  
pp. 761-768 ◽  
Author(s):  
E Dobriban

Summary Multiple hypothesis testing problems arise naturally in science. This note introduces a new fast closed testing method for multiple testing which controls the familywise error rate. Controlling the familywise error rate is state-of-the-art in many important application areas and is preferred over false discovery rate control for many reasons, including that it leads to stronger reproducibility. The closure principle rejects an individual hypothesis if all global nulls of subsets containing it are rejected using some test statistics. It takes exponential time in the worst case. When the tests are symmetric and monotone, the proposed method is an exact algorithm for computing the closure, is quadratic in the number of tests, and is linear in the number of discoveries. Our framework generalizes most examples of closed testing, such as Holm’s method and the Bonferroni method. As a special case of the method, we propose the Simes and higher criticism fusion test, which is powerful both for detecting a few strong signals and for detecting many moderate signals.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Chi-Hong Tseng ◽  
Yongzhao Shao

An appropriate sample size is crucial for the success of many studies that involve a large number of comparisons. Sample size formulas for testing multiple hypotheses are provided in this paper. They can be used to determine the sample sizes required to provide adequate power while controlling familywise error rate or false discovery rate, to derive the growth rate of sample size with respect to an increasing number of comparisons or decrease in effect size, and to assess reliability of study designs. It is demonstrated that practical sample sizes can often be achieved even when adjustments for a large number of comparisons are made as in many genomewide studies.


Author(s):  
Damian Clarke ◽  
Joseph P. Romano ◽  
Michael Wolf

When considering multiple-hypothesis tests simultaneously, standard statistical techniques will lead to overrejection of null hypotheses unless the multiplicity of the testing framework is explicitly considered. In this article, we discuss the Romano–Wolf multiple-hypothesis correction and document its implementation in Stata. The Romano–Wolf correction (asymptotically) controls the familywise error rate, that is, the probability of rejecting at least one true null hypothesis among a family of hypotheses under test. This correction is considerably more powerful than earlier multiple-testing procedures, such as the Bonferroni and Holm corrections, given that it takes into account the dependence structure of the test statistics by resampling from the original data. We describe a command, rwolf, that implements this correction and provide several examples based on a wide range of models. We document and discuss the performance gains from using rwolf over other multiple-testing procedures that control the familywise error rate.


2015 ◽  
Vol 14 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Rosa J. Meijer ◽  
Thijmen J.P. Krebs ◽  
Jelle J. Goeman

AbstractWe present a multiple testing method for hypotheses that are ordered in space or time. Given such hypotheses, the elementary hypotheses as well as regions of consecutive hypotheses are of interest. These region hypotheses not only have intrinsic meaning but testing them also has the advantage that (potentially small) signals across a region are combined in one test. Because the expected number and length of potentially interesting regions are usually not available beforehand, we propose a method that tests all possible region hypotheses as well as all individual hypotheses in a single multiple testing procedure that controls the familywise error rate. We start at testing the global null-hypothesis and when this hypothesis can be rejected we continue with further specifying the exact location/locations of the effect present. The method is implemented in the


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 905-914 ◽  
Author(s):  
Hakkyo Lee ◽  
Jack C M Dekkers ◽  
M Soller ◽  
Massoud Malek ◽  
Rohan L Fernando ◽  
...  

Abstract Controlling the false discovery rate (FDR) has been proposed as an alternative to controlling the genomewise error rate (GWER) for detecting quantitative trait loci (QTL) in genome scans. The objective here was to implement FDR in the context of regression interval mapping for multiple traits. Data on five traits from an F2 swine breed cross were used. FDR was implemented using tests at every 1 cM (FDR1) and using tests with the highest test statistic for each marker interval (FDRm). For the latter, a method was developed to predict comparison-wise error rates. At low error rates, FDR1 behaved erratically; FDRm was more stable but gave similar significance thresholds and number of QTL detected. At the same error rate, methods to control FDR gave less stringent significance thresholds and more QTL detected than methods to control GWER. Although testing across traits had limited impact on FDR, single-trait testing was recommended because there is no theoretical reason to pool tests across traits for FDR. FDR based on FDRm was recommended for QTL detection in interval mapping because it provides significance tests that are meaningful, yet not overly stringent, such that a more complete picture of QTL is revealed.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Bumrungsak Phuenaree ◽  
Suttinee Kaewtaworn

The purpose of this research was to compare the efficiency of single-step procedures and the step-down procedures in order to test for multiple comparison with a control group. Four tests; Dunnett test, Step-down Dunnett test, Bonferroni test and Bonferroni-Holm test, was considered. The performance of these tests was evaluated in terms of the family wise error rate, any-pair power and all-pairs power. A Monte Carlo simulation was performed with repeated 10,000 times. The results showed that the familywise error rate of all test statistics closed to the nominal level. The empirical power of step-down procedures were higher than the single-step procedures, and the step-down Dunnett test gave the highest power.


Biometrika ◽  
2015 ◽  
Vol 102 (4) ◽  
pp. 767-782 ◽  
Author(s):  
Jesse Y. Hsu ◽  
José R. Zubizarreta ◽  
Dylan S. Small ◽  
Paul R. Rosenbaum

Sign in / Sign up

Export Citation Format

Share Document