scholarly journals Post-processing GPS-tracks in reconstructing travelled routes in a GIS-environment: network subset selection and attribute adjustment

Annals of GIS ◽  
2017 ◽  
Vol 23 (3) ◽  
pp. 203-217 ◽  
Author(s):  
Justin Van Dijk ◽  
Tom De Jong
Author(s):  
Lorenzo Benvenuto ◽  
Roberto Marzocchi ◽  
Ilaria Ferrando ◽  
Bianca Federici ◽  
Domenico Sguerso

DataBases (DB) are a widespread source of data, useful for many applications in different scientific fields. The present contribution describes an automatic procedure to access, download and store open access data from different sources, to be processed in a GIS environment. In particular, it refers to the specific need of the authors to manage both meteorological data (pressure and temperature) and GNSS (Global Navigation Satellite System) Zenith Total Delay (ZTD) estimates. Such data allow to produce Precipitable Water Vapor (PWV) maps, thanks to the so called GNSS for Meteorology(G4M) procedure, developed through GRASS GIS software ver. 7.4, for monitoring in time and interpreting severe meteorological events. Actually, the present version of the procedure includes the meteorological pressure and temperature data coming from NOAA’s Integrated Surface Database (ISD), whereas the ZTD data derive from the RENAG DB, that collects ZTD estimates for 181 GNSS Permanent Stations (PSs) from 1998 to 2015 in the French-Italian boundary region. Several Python scripts have been implemented to manage the download of data from NOAA and RENAG DBs, their import on a PostgreSQL/PostGIS geoDB, besides the data elaboration with GRASS GIS to produce PWV maps. The key features of the data management procedure are its scalability and versatility for different sources of data and different contexts. As a future development, a web-interface for the procedure will allow an easier interaction for the users both for post-processing and real-time data. The data management procedure repository is available at https://github.com/gtergeomatica/G4M-data


2018 ◽  
Author(s):  
Lorenzo Benvenuto ◽  
Roberto Marzocchi ◽  
Ilaria Ferrando ◽  
Bianca Federici ◽  
Domenico Sguerso

DataBases (DB) are a widespread source of data, useful for many applications in different scientific fields. The present contribution describes an automatic procedure to access, download and store open access data from different sources, to be processed in a GIS environment. In particular, it refers to the specific need of the authors to manage both meteorological data (pressure and temperature) and GNSS (Global Navigation Satellite System) Zenith Total Delay (ZTD) estimates. Such data allow to produce Precipitable Water Vapor (PWV) maps, thanks to the so called GNSS for Meteorology(G4M) procedure, developed through GRASS GIS software ver. 7.4, for monitoring in time and interpreting severe meteorological events. Actually, the present version of the procedure includes the meteorological pressure and temperature data coming from NOAA’s Integrated Surface Database (ISD), whereas the ZTD data derive from the RENAG DB, that collects ZTD estimates for 181 GNSS Permanent Stations (PSs) from 1998 to 2015 in the French-Italian boundary region. Several Python scripts have been implemented to manage the download of data from NOAA and RENAG DBs, their import on a PostgreSQL/PostGIS geoDB, besides the data elaboration with GRASS GIS to produce PWV maps. The key features of the data management procedure are its scalability and versatility for different sources of data and different contexts. As a future development, a web-interface for the procedure will allow an easier interaction for the users both for post-processing and real-time data. The data management procedure repository is available at https://github.com/gtergeomatica/G4M-data


2021 ◽  
Vol 13 (15) ◽  
pp. 3048
Author(s):  
Davide Donati ◽  
Bernhard Rabus ◽  
Jeanine Engelbrecht ◽  
Doug Stead ◽  
John Clague ◽  
...  

We present a workflow for investigating large, slow-moving landslides which combines the synthetic aperture radar (SAR) technique, GIS post-processing, and airborne laser scanning (ALS), and apply it to Fels landslide in Alaska, US. First, we exploit a speckle tracking (ST) approach to derive the easting, northing, and vertical components of the displacement vectors across the rock slope for two five-year windows, 2010–2015 and 2015–2020. Then, we perform post-processing in a GIS environment to derive displacement magnitude, trend, and plunge maps of the landslide area. Finally, we compare the ST-derived displacement data with structural lineament maps and profiles extracted from the ALS dataset. Relying on remotely sensed data, we estimate that the thickness of the slide mass is more than 100 m and displacements occur through a combination of slumping at the toe and planar sliding in the central and upper slope. Our approach provides information and interpretations that can assist in optimizing and planning fieldwork activities and site investigations at landslides in remote locations.


2010 ◽  
Vol 13 (4) ◽  
pp. 91-98
Author(s):  
Tuan Dinh Phan ◽  
Binh Thien Nguyen ◽  
Dien Khanh Le ◽  
Phuong Hoang Pham

The paper presents an application the research results previously done by group on the influence of technological parameters to the deformation angle and finish surface quality in order to choose technology parameters for the incremental sheet forming (ISF) process to produce products for the purpose of rapid prototyping or single-batch production, including all steps from design and process 3D CAD model, calculate and select the technological parameters, setting up manufacturing and the stage of post-processing. The samples formed successfully showed high applicability of this technology to practical work, the complex products with the real size can be produced in industries: automotive, motorcycle, civil...


2017 ◽  
Vol 3 (1) ◽  
pp. 73-83
Author(s):  
Rahmayati Alindra ◽  
Heroe Wijanto ◽  
Koredianto Usman

Ground Penetrating Radar (GPR) adalah salah satu jenis radar yang digunakan untuk menyelidiki kondisi di bawah permukaan tanah tanpa harus menggali dan merusak tanah. Sistem GPR terdiri atas pengirim (transmitter), yaitu antena yang terhubung ke generator sinyal dan bagian penerima (receiver), yaitu antena yang terhubung ke LNA dan ADC yang kemudian terhubung ke unit pengolahan data hasil survey serta display sebagai tampilan output-nya dan post  processing untuk alat bantu mendapatkan informasi mengenai suatu objek. GPR bekerja dengan cara memancarkan gelombang elektromagnetik ke dalam tanah dan menerima sinyal yang dipantulkan oleh objek-objek di bawah permukaan tanah. Sinyal yang diterima kemudian diolah pada bagian signal processing dengan tujuan untuk menghasilkan gambaran kondisi di bawah permukaan tanah yang dapat dengan mudah dibaca dan diinterpretasikan oleh user. Signal processing sendiri terdiri dari beberapa tahap yaitu A-Scan yang meliputi perbaikan sinyal dan pendektesian objek satu dimensi, B-Scan untuk pemrosesan data dua dimensi  dan C-Scan untuk pemrosesan data tiga dimensi. Metode yang digunakan pada pemrosesan B-Scan salah satunya adalah dengan  teknik pemrosesan citra. Dengan pemrosesan citra, data survey B-scan diolah untuk didapatkan informasi mengenai objek. Pada penelitian ini, diterapkan teori gradien garis pada pemrosesan citra B-scan untuk menentukan bentuk dua dimensi dari objek bawah tanah yaitu persegi, segitiga atau lingkaran. 


2020 ◽  
Vol 64 (5) ◽  
pp. 50411-1-50411-8
Author(s):  
Hoda Aghaei ◽  
Brian Funt

Abstract For research in the field of illumination estimation and color constancy, there is a need for ground-truth measurement of the illumination color at many locations within multi-illuminant scenes. A practical approach to obtaining such ground-truth illumination data is presented here. The proposed method involves using a drone to carry a gray ball of known percent surface spectral reflectance throughout a scene while photographing it frequently during the flight using a calibrated camera. The captured images are then post-processed. In the post-processing step, machine vision techniques are used to detect the gray ball within each frame. The camera RGB of light reflected from the gray ball provides a measure of the illumination color at that location. In total, the dataset contains 30 scenes with 100 illumination measurements on average per scene. The dataset is available for download free of charge.


Author(s):  
Manish M. Kayasth ◽  
Bharat C. Patel

The entire character recognition system is logically characterized into different sections like Scanning, Pre-processing, Classification, Processing, and Post-processing. In the targeted system, the scanned image is first passed through pre-processing modules then feature extraction, classification in order to achieve a high recognition rate. This paper describes mainly on Feature extraction and Classification technique. These are the methodologies which play an important role to identify offline handwritten characters specifically in Gujarati language. Feature extraction provides methods with the help of which characters can identify uniquely and with high degree of accuracy. Feature extraction helps to find the shape contained in the pattern. Several techniques are available for feature extraction and classification, however the selection of an appropriate technique based on its input decides the degree of accuracy of recognition. 


Sign in / Sign up

Export Citation Format

Share Document