The influence of land use on forest structure, species composition, and soil conditions in headwater-slope wetlands of coastal Alabama, USA

Author(s):  
W. Flynt Barksdale ◽  
Christopher J. Anderson
2007 ◽  
Vol 16 (4) ◽  
pp. 426-439 ◽  
Author(s):  
Cristian Echeverría ◽  
Adrian C. Newton ◽  
Antonio Lara ◽  
José María Rey Benayas ◽  
David A. Coomes

2012 ◽  
Vol 9 (8) ◽  
pp. 2989-3002 ◽  
Author(s):  
K. Schelde ◽  
P. Cellier ◽  
T. Bertolini ◽  
T. Dalgaard ◽  
T. Weidinger ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O emissions, measured using static chambers. Measurements were made over a period of 20 months, and sampling was intensified during two weeks in spring 2009 when chambers were installed at ten locations or fields to cover different crops and topography and slurry was applied to three of the fields. N2O emissions during spring 2009 were relatively low, with maximum values below 20 ng N m−2 s−1. This applied to all land use types including winter grain crops, grasslands, meadows, and wetlands. Slurry application to wheat fields resulted in short-lived two-fold increases in emissions. The moderate N2O fluxes and their moderate response to slurry application were attributed to dry soil conditions due to the absence of rain during the four previous weeks. Cumulative annual emissions from two arable fields that were both fertilized with mineral fertilizer and manure were large (17 kg N2O-N ha−1 yr−1 and 5.5 kg N2O-N ha−1 yr−1) during the previous year when soil water conditions were favourable for N2O production during the first month following fertilizer application. Our findings confirm the importance of weather conditions as well as nitrogen management on N2O fluxes.


2007 ◽  
Vol 250 (1-2) ◽  
pp. 77-88 ◽  
Author(s):  
I. Vanha-Majamaa ◽  
S. Lilja ◽  
R. Ryömä ◽  
J.S. Kotiaho ◽  
S. Laaka-Lindberg ◽  
...  

Biologia ◽  
2017 ◽  
Vol 72 (7) ◽  
Author(s):  
Mária Petrášová-Šibíková ◽  
Igor Matečný ◽  
Eva Uherčíková ◽  
Peter Pišút ◽  
Silvia Kubalová ◽  
...  

AbstractHuman alteration of watercourses is global phenomenon that has had significant impacts on local ecosystems and the services they provide. Monitoring of abiotic and biotic changes is essential to mitigating long-lasting effects, and the 23-year dataset from the Gabčíkovo Waterworks provided a rare opportunity to assess the impact of groundwater regimes on vegetation. The main aim of this study was to describe the effect of the Gabčíkovo Waterworks on vegetation structure and species composition of the adjacent riparian floodplain forests over the past 23 years. The results are based on studies of three permanent monitoring plots (PMPs) located in the Danube inland delta – two outside (PMP 1 and 3) and one (PMP 2) fully under the influence of the artificial supply system. Our results demonstrate that the Danube inland delta was negatively affected by the Gabčíkovo construction, particularly for sites outside of the artificial supply system. There was a significant decrease in soil moisture and increase in nitrogen at both external PMPs (1 and 3). Alter soil conditions were accompanied by negative changes in plant species composition demonstrated by decreases in the number of typical floodplain forest species that are characteristic for the alliance


2021 ◽  
Vol 9 (1) ◽  
pp. 3201-3210
Author(s):  
Tedi Yunanto ◽  
Farisatul Amanah ◽  
Nabila Putri Wisnu

There are two regulations for mine reclamation success in the forestry area in Indonesia, namely Minister of Forestry Regulation No. P.60/Menhut-II/2009 and Minister of Energy and Mineral Resources Decree No. 1827.K/30/MEM/2018. Both regulations rule vegetation and soil success. This study aims to analyse criteria parameters from both regulations in the mine reclamation and compare them to the surrounding secondary natural forest (SNF). This study was conducted in 6 six types of mine reclamation stand structures: 1, 4, 6, 9, 11-year-old plantation and SNF using 1 hectare of the circular plot each (total 6 ha). Soil samples were collected from 40 cm depth to analyse physical, biological and chemical conditions. Mine reclamation areas had almost similar physical, biological and chemical soil conditions with SNF. Nevertheless, due to the potential acid-forming (PAF) material from overburden, the 1-year-old plantation had pH = 3.23-3.27. The highest diversity index and the number of species and families in all reclamation areas were H’ = 1.82 (11-year-old); 14 species (9-year-old); and 11 families (9-year-old), comparing with SNF were H’ = 3.48; 67 species, and 31 families. Conversely, vegetation structure parameters in mine reclamation areas were higher than SNF (diameter at height breast (DBH; 1.3 m) = 28.42 cm; tree density = 469/ha; basal area = 35.04 m2/ha; and total height = 16.85 m). Compared to the SNF, vegetation structure and soil conditions are mostly possible for mine reclamation success. Still, species composition needs to be considered further as a standard interval to meet the criteria.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3218
Author(s):  
Simon Damien Carrière ◽  
Nicolas K. Martin-StPaul ◽  
Claude Doussan ◽  
François Courbet ◽  
Hendrik Davi ◽  
...  

The spatial forest structure that drives the functioning of these ecosystems and their response to global change is closely linked to edaphic conditions. However, the latter properties are particularly difficult to characterize in forest areas developed on karst, where soil is highly rocky and heterogeneous. In this work, we investigated whether geophysics, and more specifically electromagnetic induction (EMI), can provide a better understanding of forest structure. We use EMI (EM31, Geonics Limited, Ontario, Canada) to study the spatial variability of ground properties in two different Mediterranean forests. A naturally post-fire regenerated forest composed of Aleppo pines and Holm oaks and a monospecific plantation of Altlas cedar. To better interpret EMI results, we used electrical resistivity tomography (ERT), soil depth surveys, and field observations. Vegetation was also characterized using hemispherical photographs that allowed to calculate plant area index (PAI). Our results show that the variability of ground properties contribute to explaining the variability in the vegetation cover development (plant area index). Vegetation density is higher in areas where the soil is deeper. We showed a significant correlation between edaphic conditions and tree development in the naturally regenerated forest, but this relationship is clearly weaker in the cedar plantation. We hypothesized that regular planting after subsoiling, as well as sylvicultural practices (thinning and pruning) influenced the expected relationship between vegetation structure and soil conditions measured by EMI. This work opens up new research avenues to better understand the interplay between soil and subsoil variability and forest response to climate change.


2010 ◽  
Vol 3 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Jacob Godfrey Agea ◽  
Clement Akais Okia ◽  
Refaat Atalla Ahmed Abohassan ◽  
James Munga Kimondo ◽  
Susan B. Tumwebaze ◽  
...  

2010 ◽  
Vol 56 (No. 11) ◽  
pp. 485-504 ◽  
Author(s):  
K. Matějka ◽  
S. Vacek ◽  
V. Podrázský

This paper documents the development of soil conditions in the set of 32 permanent research plots in the Krkonoše (Giant) Mts. These plots represent an altitudinal gradient covering the ecosystems of beech, mixed beech-spruce and spruce stands. In all plots, representing the site conditions of the highest areas of the mountain range, standard soil pits were prepared and the soil sampling was performed in autumn of years 1980, 1993, 1998, 2003 and 2009. The results reflect extreme site conditions, soil acidification, large scale surface liming and in minor extent also different tree species composition of the stands. The general type of the soil-genesis is represented by the podzolisation, overlapping the other soil-genetic factors, including the tree species composition. Nevertheless, this development is mostly expressed in the spruce stands. The beech dominance and/or co-dominance are reflected especially by more efficient N-cycling, higher pH, S and V values and fluctuation and lower extractable Al3+ content. More efficient cycling in beech ecosystems is insignificantly documented for plant available phosphorus, calcium and magnesium contents; on the contrary higher dynamics for iron ions was registered in the spruce stands. The long-term soil dynamics with a hysteresis (evident on the base of ordination analysis) can be divided into some periods – processes of acidification (typical in the 1980's samples), liming (main effect in 1993 and 1998) and regeneration (2003, 2009). Other features, important for the soil development, are probably related to the vegetation change, but this relation is not statistically significant.


Sign in / Sign up

Export Citation Format

Share Document