Estimating freeway travel time and its reliability using radar sensor data

2017 ◽  
Vol 6 (2) ◽  
pp. 97-114 ◽  
Author(s):  
Chaoru Lu ◽  
Jing Dong
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5228
Author(s):  
Jin-Cheol Kim ◽  
Hwi-Gu Jeong ◽  
Seongwook Lee

In this study, we propose a method to identify the type of target and simultaneously determine its moving direction in a millimeter-wave radar system. First, using a frequency-modulated continuous wave (FMCW) radar sensor with the center frequency of 62 GHz, radar sensor data for a pedestrian, a cyclist, and a car are obtained in the test field. Then, a You Only Look Once (YOLO)-based network is trained with the sensor data to perform simultaneous target classification and moving direction estimation. To generate input data suitable for the deep learning-based classifier, a method of converting the radar detection result into an image form is also proposed. With the proposed method, we can identify the type of each target and its direction of movement with an accuracy of over 95%. Moreover, the pre-trained classifier shows an identification accuracy of 85% even for newly acquired data that have not been used for training.


2006 ◽  
Vol 4 ◽  
pp. 73-78 ◽  
Author(s):  
S. Tejero ◽  
U. Siart ◽  
J. Detlefsen

Abstract. Increasing resolution is an attractive goal for all types of radar sensor applications. Obtaining high radar resolution is strongly related to the signal bandwidth which can be used. The currently available frequency bands however, restrict the available bandwidth and consequently the achievable range resolution. As nowadays more sensors become available e.g. on automotive platforms, methods of combining sensor information stemming from sensors operating in different and not necessarily overlapping frequency bands are of concern. It will be shown that it is possible to derive benefit from perceiving the same radar scenery with two or more sensors in distinct frequency bands. Beyond ordinary sensor fusion methods, radar information can be combined more effectively if one compensates for the lack of mutual coherence, thus taking advantage of phase information. At high frequencies, complex scatterers can be approximately modeled as a group of single scattering centers with constant delay and slowly varying amplitude, i.e. a set of complex exponentials buried in noise. The eigenanalysis algorithms are well known for their capability to better resolve complex exponentials as compared to the classical spectral analysis methods. These methods exploit the statistical properties of those signals to estimate their frequencies. Here, two main approaches to extend the statistical analysis for the case of data collected at two different subbands are presented. One method relies on the use of the band gap information (and therefore, coherent data collection is needed) and achieves an increased resolution capability compared with the single-band case. On the other hand, the second approach does not use the band gap information and represents a robust way to process radar data collected with incoherent sensors. Combining the information obtained with these two approaches a robust estimator of the target locations with increased resolution can be built.


Information ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 267
Author(s):  
Yajuan Guo ◽  
Licai Yang

Travel time is one of the most critical indexes to describe urban traffic operating states. How to obtain accurate and robust travel time estimates, so as to facilitate to make traffic control decision-making for administrators and trip-planning for travelers, is an urgent issue of wide concern. This paper proposes a reliable estimation method of urban link travel time using multi-sensor data fusion. Utilizing the characteristic analysis of each individual traffic sensor data, we first extract link travel time from license plate recognition data, geomagnetic detector data and floating car data, respectively, and find that their distribution patterns are similar and follow logarithmic normal distribution. Then, a support degree algorithm based on similarity function and a credibility algorithm based on membership function are developed, aiming to overcome the conflicts among multi-sensor traffic data and the uncertainties of single-sensor traffic data. The reliable fusion weights for each type of traffic sensor data are further determined by integrating the corresponding support degree with credibility. A case study was conducted using real-world data from a link of Jingshi Road in Jinan, China and demonstrated that the proposed method can effectively improve the accuracy and reliability of link travel time estimations in urban road systems.


2021 ◽  
pp. 1-1
Author(s):  
Hanjie Song ◽  
Hui Sun ◽  
Junjie Yang ◽  
He Mao ◽  
Mingchen Liu ◽  
...  
Keyword(s):  

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6931
Author(s):  
Dmitry Pavlyuk

Spatiotemporal models are a popular tool for urban traffic forecasting, and their correct specification is a challenging task. Temporal aggregation of traffic sensor data series is a critical component of model specification, which determines the spatial structure and affects models’ forecasting accuracy. Through extensive experiments with real-world data, we investigated the effects of the selected temporal aggregation level for forecasting performance of different spatiotemporal model specifications. A set of analysed models include travel-time-based and correlation-based spatially restricted vector autoregressive models, compared to classical univariate and multivariate time series models. Research experiments are executed in several dimensions: temporal aggregation levels, forecasting horizons (one-step and multi-step forecasts), spatial complexity (sequential and complex spatial structures), the spatial restriction approach (unrestricted, travel-time-based and correlation-based), and series transformation (original and detrended traffic volumes). The obtained results demonstrate the crucial role of the temporal aggregation level for identification of the spatiotemporal traffic flow structure and selection of the best model specification. We conclude that the common research practice of an arbitrary selection of the temporal aggregation level could lead to incorrect conclusions on optimal model specification. Thus, we recommend extending the traffic forecasting methodology by validation of existing and newly developed model specifications for different temporal aggregation levels. Additionally, we provide empirical results on the selection of the optimal temporal aggregation level for the discussed spatiotemporal models for different forecasting horizons.


Author(s):  
Bahar Namaki Araghi ◽  
Lars Tørholm Christensen ◽  
Rajesh Krishnan ◽  
Jonas Hammershøj Olesen ◽  
Harry Lahrmann

Sign in / Sign up

Export Citation Format

Share Document