Dual role of E-cadherin in cancer cells

Author(s):  
Svetlana N. Rubtsova ◽  
Irina Y. Zhitnyak ◽  
Natalya A. Gloushankova
Keyword(s):  
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1421-1421
Author(s):  
Min Soon Cho ◽  
Qianghua Hu ◽  
Rajesha Rupaimoole ◽  
Anil Sood ◽  
Vahid Afshar-Kharghan

Abstract We have shown that complement component 3 (C3) is expressed in malignant ovarian epithelial cells and enhances cell proliferation in vitro and tumor growth in vivo. C3 is secreted by cancer cells into the tumor microenvironment and promotes tumor growth through an autocrine loop. To understand the mechanism of upregulation of C3 expression in malignant epithelial cells, we studied the transcriptional regulation of C3, and found that TWIST1, a major regulator of EMT, binds to the C3 promoter and regulates C3 transcription. Knockdown of the TWIST1 gene reduced C3 mRNA, and TWIST1 overexpression increased C3 mRNA. TWIST1 promotes epithelial-mesenchymal transition (EMT) during normal development and in metastasis of malignant tumors. An important marker of EMT is a reduction in the surface expression of E-cadherin on cells facilitating migration and invasion of these cells. TWIST1 is a transcriptional repressor of E-cadherin; and because TWIST1 increases C3 expression, we investigated whether C3 is also a negative regulator of E-cadherin expression. We overexpressed C3 in ovarian cancer cells by stable transduction of lentivirus carrying C3 cDNA. Overexpression of C3 was associated with 32% reduction in the expression of E-cadherin resulting in enhanced migration ability of cells by 2.3 folds and invasiveness by 1.75 folds, as compared to control cells transduced with control lentivirus. To investigate whether TWIST1-induced reduction in E-cadherin is C3-mediated or not, we studied the effect of TWIST1 overexpression simultaneous with C3 knockdown in ovarian cancer cells. Overexpression of TWIST1 alone resulted in 70% reduction in E-cadherin mRNA and this was completely reversed after simultaneous C3 knockdown in these cells. To investigate the correlation between C3 and TWIST1 in vivo, we studied the co-expression of these two proteins in mouse embryos (physiologic EMT) and in malignant tumors (pathologic EMT). Given the role of EMT in embryogenesis we immunostained mouse embryos at different stages of development, using antibodies against TWIST1 or C3. Transverse section of 9.5-day post-coitum (9.5dpc) mouse embryos showed co-expression of TWIST1 and C3 in otocyst (ot) and hindbrain (hb) of neural crest. In the whole-mounted 11.5dpc mouse embryos, C3 and TWIST1 were co-expressed in limb buds. Given the role of EMT in malignancy, tumors induced in mice after intraperitoneal injection of murine ovarian cancer cells were resected and immunostained for C3 and TWIST1 proteins. TWIST1 and C3 co-localized at tumor edges, where EMT and tumor cells migration occur. Taken together, these data provide evidence that TWIST1 regulates C3 expression, and C3 promotes EMT through E-cadherin. Disclosures No relevant conflicts of interest to declare.


Oncogene ◽  
2015 ◽  
Vol 35 (24) ◽  
pp. 3151-3162 ◽  
Author(s):  
Q Zhang ◽  
T Wei ◽  
K Shim ◽  
K Wright ◽  
K Xu ◽  
...  

Abstract Sprouty (SPRY) appears to act as a tumor suppressor in cancer, whereas we demonstrated that SPRY2 functions as a putative oncogene in colorectal cancer (CRC) (Oncogene, 2010, 29: 5241–5253). We investigated the mechanisms by which SPRY regulates epithelial–mesenchymal transition (EMT) in CRC. SPRY1 and SPRY2 mRNA transcripts were significantly upregulated in human CRC. Suppression of SPRY2 repressed AKT2 and EMT-inducing transcription factors and significantly increased E-cadherin expression. Concurrent downregulation of SPRY1 and SPRY2 also increased E-cadherin and suppressed mesenchymal markers in colon cancer cells. An inverse expression pattern between AKT2 and E-cadherin was established in a human CRC tissue microarray. SPRY2 negatively regulated miR-194-5p that interacts with AKT2 3′ untranslated region. Mir-194 mimics increased E-cadherin expression and suppressed cancer cell migration and invasion. By confocal microscopy, we demonstrated redistribution of E-cadherin to plasma membrane in colon cancer cells transfected with miR-194. Spry1 −/− and Spry2 −/− double mutant mouse embryonic fibroblasts exhibited decreased cell migration while acquiring several epithelial markers. In CRC, SPRY drive EMT and may serve as a biomarker of poor prognosis.


2001 ◽  
Vol 306 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Shinsuke Mukai ◽  
Kohji Miyazaki ◽  
Hiroyuki Yakushiji

2004 ◽  
Vol 22 (14_suppl) ◽  
pp. 3143-3143
Author(s):  
T. Hata ◽  
H. Yamamoto ◽  
M. Ikeda ◽  
M. Yasui ◽  
I. Seshimo ◽  
...  

2017 ◽  
Vol 8 (8) ◽  
pp. e3025-e3025 ◽  
Author(s):  
Yelyzaveta Shlyakhtina ◽  
Valeria Pavet ◽  
Hinrich Gronemeyer

2016 ◽  
Vol 11 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Gaojian Luo ◽  
Diyu Huang ◽  
Ran Tao ◽  
Jianfeng Chen

AbstractBreast cancer is the most prevalent cancer in women worldwide. Numerous studies have suggested that the E-cadherin adhesion system is dysregulated in cancer cells. These impaired functions of E-cadherin contribute to releasing cancer cells from the primary lesion to cell dedifferentiation. Some studies have shown that polymorphism may affect E-cadherin expression, and then play a role in susceptibility to breast cancer. However, the results remained controversial. In this short review, we summarize the functions of E-cadherin and the signaling pathways it regulates, and assess the association between CDH1 polymorphisms and breast cancer susceptibility. This study suggests that genetic variation in CDH1 and -160C/A polymorphism may have an association with breast cancer risk. The assessment of CDH1 polymorphisms may be used for the identification of patients suitable for anti- CDH1 therapy.


2003 ◽  
Vol 124 (4) ◽  
pp. A553
Author(s):  
Mark Juhasz ◽  
Hans-Ulrich Schulz ◽  
Christoph Roecken ◽  
Bela Molnar ◽  
Zsolt Tulassay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document