scholarly journals Recent progress in graphene based polymer nanocomposites

2020 ◽  
Vol 6 (1) ◽  
pp. 1833476
Author(s):  
Abdulazeez Tunbosun Lawal
2018 ◽  
Vol 8 (9) ◽  
pp. 1452 ◽  
Author(s):  
Ilaria Armentano ◽  
Matteo Gigli ◽  
Francesco Morena ◽  
Chiara Argentati ◽  
Luigi Torre ◽  
...  

In the last decade, biopolymer matrices reinforced with nanofillers have attracted great research efforts thanks to the synergistic characteristics derived from the combination of these two components. In this framework, this review focuses on the fundamental principles and recent progress in the field of aliphatic polyester-based nanocomposites for regenerative medicine applications. Traditional and emerging polymer nanocomposites are described in terms of polymer matrix properties and synthesis methods, used nanofillers, and nanocomposite processing and properties. Special attention has been paid to the most recent nanocomposite systems developed by combining alternative copolymerization strategies with specific nanoparticles. Thermal, electrical, biodegradation, and surface properties have been illustrated and correlated with the nanoparticle kind, content, and shape. Finally, cell-polymer (nanocomposite) interactions have been described by reviewing analysis methodologies such as primary and stem cell viability, adhesion, morphology, and differentiation processes.


2019 ◽  
pp. 089270571988094 ◽  
Author(s):  
Himanshu V Madhad ◽  
Dilip V Vasava

In polymer nanocomposites, graphene is possibly the most promising nanofiller. Graphene produces impressive properties for polymers at very low filler content, which makes it highly interesting in building high-performance materials compared to other classes of polymer nanocomposites. Graphene-modified polymer nanocomposites have attracted much attention in scientific literature because of the need of superior materials with desirable properties such as electrical, mechanical, thermal, flame retardant, and gas barrier. Frequent studies have been attempted to produce graphene–polyamide (G-PA) nanocomposites with novel and improved properties. Based on this review, one can identify the synthesis technique and preparation for G-PA nanocomposites, which can further be useful in numerous applications.


2021 ◽  
Vol 41 (9) ◽  
pp. 768-787
Author(s):  
Victor Ekene Ogbonna ◽  
A. Patricia I. Popoola ◽  
Olawale M. Popoola ◽  
Samson O. Adeosun

Abstract The adoption of polymer nanocomposites in the design/manufacturing of parts for engineering and technological applications showcases their outstanding properties. Among the polymer nanocomposites, polyimide (PI) nanocomposites have attracted much attention as a composite material capable of withstanding mechanical, thermal and electrical stresses, hence engineered for use in harsh environments. However, the nanocomposites are limited to the application area that demands conduction polymer and polymer composites due to the low electrical conductivity of PI. Although, there has been advancement in improving the mechanical, thermal and electrical properties of PI nanocomposites. Thus, the review focuses on recent progress on improving the mechanical, thermal and electrical conductivity properties of PI nanocomposites via the incorporation of carbon nanotubes (CNTs), graphene and graphene oxide (GO) fillers into the PI matrix. The review summarises the influence of CNTs, graphene and GO on the mechanical and conductivity properties of PI nanocomposites. The authors ended the review with advancement, challenges and recommendations for future improvement of PI reinforced conductive nanofillers composites. Therefore, the review study proffers an understanding of the improvement and selection of PI nanocomposites material for mechanical, thermal and electrical conductivity applications. Additionally, in the area of conductive polymer nanocomposites, this review will also pave way for future study.


2020 ◽  
pp. 2001105 ◽  
Author(s):  
Xianxian Sun ◽  
Chuanjin Huang ◽  
Lidong Wang ◽  
Lei Liang ◽  
Yuanjing Cheng ◽  
...  

Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


Author(s):  
Dawn A. Bonnell ◽  
Yong Liang

Recent progress in the application of scanning tunneling microscopy (STM) and tunneling spectroscopy (STS) to oxide surfaces has allowed issues of image formation mechanism and spatial resolution limitations to be addressed. As the STM analyses of oxide surfaces continues, it is becoming clear that the geometric and electronic structures of these surfaces are intrinsically complex. Since STM requires conductivity, the oxides in question are transition metal oxides that accommodate aliovalent dopants or nonstoichiometry to produce mobile carriers. To date, considerable effort has been directed toward probing the structures and reactivities of ZnO polar and nonpolar surfaces, TiO2 (110) and (001) surfaces and the SrTiO3 (001) surface, with a view towards integrating these results with the vast amount of previous surface analysis (LEED and photoemission) to build a more complete understanding of these surfaces. However, the spatial localization of the STM/STS provides a level of detail that leads to conclusions somewhat different from those made earlier.


Sign in / Sign up

Export Citation Format

Share Document