Recent progress on improving the mechanical, thermal and electrical conductivity properties of polyimide matrix composites from nanofillers perspective for technological applications
Abstract The adoption of polymer nanocomposites in the design/manufacturing of parts for engineering and technological applications showcases their outstanding properties. Among the polymer nanocomposites, polyimide (PI) nanocomposites have attracted much attention as a composite material capable of withstanding mechanical, thermal and electrical stresses, hence engineered for use in harsh environments. However, the nanocomposites are limited to the application area that demands conduction polymer and polymer composites due to the low electrical conductivity of PI. Although, there has been advancement in improving the mechanical, thermal and electrical properties of PI nanocomposites. Thus, the review focuses on recent progress on improving the mechanical, thermal and electrical conductivity properties of PI nanocomposites via the incorporation of carbon nanotubes (CNTs), graphene and graphene oxide (GO) fillers into the PI matrix. The review summarises the influence of CNTs, graphene and GO on the mechanical and conductivity properties of PI nanocomposites. The authors ended the review with advancement, challenges and recommendations for future improvement of PI reinforced conductive nanofillers composites. Therefore, the review study proffers an understanding of the improvement and selection of PI nanocomposites material for mechanical, thermal and electrical conductivity applications. Additionally, in the area of conductive polymer nanocomposites, this review will also pave way for future study.